image
EN CONSTRUCTION
Numérisation des cours Alain PASQUET, Mise en page Pascal CHOUR - 2016 - 2017


LECON 1

Fin de la leçon 1


LECON 2

Fin de la leçon 2


LECON 3

Fin de la leçon 3


LECON 4

Fin de la leçon 4


LECON 5

Fin de la leçon 5


LECON 6

Fin de la leçon 6


LECON 7

Fin de la leçon 7


LECON 8

Fin de la leçon 8


LECON 9

Fin de la leçon 9


LECON 10

Fin de la leçon 10


LECON 11

Fin de la leçon 11


LECON 12

1 – PARAMÈTRES D'UN TRANSISTOR

Les courbes caractéristiques d'un transistor indiquent comme nous l'avons vu, les propriétés relatives à n'importe quel point de fonctionnement. Elles sont indispensables pour avoir une idée générale sur le comportement du transistor et servent en particulier à déterminer le point de fonctionnement qui convient le mieux et à calculer le circuit de polarisation.

Cependant il est souvent plus intéressant du point de vue calculs, d'opérer sur des nombres plutôt que de continuer à travailler sur les caractéristiques.

Les propriétés d'un transistor, relatives à un point de fonctionnement particulier, peuvent être indiquées de différentes façons en donnant un certain nombre de valeurs que l'on appelle Paramètres.

Un paramètre typique est le coefficient d'amplification (α ou β selon le type du montage) mais on voit rapidement que donné seul il ne suffit pas à exprimer d'une façon complète les propriétés d'un transistor : en effet, deux transistors, l'un de très faible puissance et l'autre de puissance plus grande, peuvent avoir un coefficient d'amplification de même valeur et présenter cependant des caractéristiques totalement différentes.

Pour schématiser d'une façon complète les propriétés d'un transistor, il faut donc donner plus d'un paramètre : en général quatre paramètres lorsqu'il s'agit d'un transistor basse fréquence, environ six pour un transistor H.F.

Dans chaque cas, les paramètres peuvent être représentés de façon différente. Le choix d'un système de paramètres, plutôt qu'un autre ne se justifie que par la simplification des calculs.

Nous prendrons surtout en considération, un système de paramètres appelés Paramètres Hybrides. Vous aurez également à étudier un système utilisé quelquefois en BF et composé des Paramètres r (résistants). Je vous donnerai enfin pour terminer, quelques indications sur les systèmes utilisés pour les transistors "haute-fréquence".

Afin de mieux comprendre la signification des paramètres hybrides il faut tout d'abord apprendre ce que signifient les notions de Résistance d'entrée et Résistance de sortie d'un transistor.

1 – 1 RÉSISTANCE D'ENTRÉE ET DE SORTIE EN COURANT CONTINU

Considérons le schéma de la figure 1 : le montage du transistor est en émetteur commun, et une seule pile est utilisée pour polariser la base et le collecteur. C'est le schéma classique que vous connaissez bien.

Avec le potentiomètre PC on peut régler la tension du collecteur et avec RB le courant de base : le transistor est amené à travailler en n'importe quel point de sa caractéristique. Le millivoltmètre V1 et le microampèremètre I1 mesurent la tension et le courant de la base (grandeurs d'entrée), tandis que le voltmètre V2 et le milliampèremètre I2 contrôlent la tension et le courant de collecteur (grandeurs de sortie).

Si l'on applique maintenant au collecteur du transistor une certaine tension VCE et que l'on fasse traverser la base par un courant IB, le point de fonctionnement sera ainsi déterminé. Dans ces conditions, le circuit du collecteur sera traversé par un courant IC mesuré par I2 et entre la base et l'émetteur il s'établira une tension VBE mesurée par V1.

On peut alors définir une Résistance d'entrée relative au point de fonctionnement considéré et indiquée par le symbole Re, cette résistance étant obtenue en faisant le rapport entre la tension et le courant d'entrée, c'est-à-dire :

Re = VBE/IB

Si l'on mesure la tension VBE en mV (cette tension étant relativement faible il faut la mesurer à l'aide d'un millivoltmètre) et le courant IB en µA la valeur de Re sera alors exprimée en kΩ. Ainsi par exemple, si pour un courant de base de 50µA, on a une tension VBE = 150mV, la valeur de la résistance d'entrée sera Re = 150/50 = 3kΩ.

On peut définir de la même façon la résistance de sortie, comme étant le rapport entre la tension et le courant de sortie.

Rs = VCE/IC

Comme normalement la tension du collecteur se mesure en volts et le courant en milliampères, la résistance de sortie sera donnée en kΩ. Par exemple, si pour le point de fonctionnement considéré on a VCE = 5 V et IC = 2,5mA, la résistance de sortie Rs sera :

Rs = 5/2,5 = 2kΩ

Les résistances Re et Rs ainsi définies sont effectivement les valeurs des résistances présentées par le transistor, c'est-à-dire que Re est la résistance que présente le circuit de base au passage du courant IB, et Rs est par analogie, la résistance présentée par le circuit du collecteur au courant IC (pour un point de fonctionnement déterminé).

Comme ces résistances correspondent à des tensions continues de polarisation appliquées au transistor, on les appelle Résistances statiques (d'entrée et de sortie) ou Résistances en courant continu.

Le nom de "Résistance statique" dérive du fait que dans les conditions définies ci-dessus, on n'applique à l'électrode de commande aucun signal à amplifier : le transistor se trouve donc au "au repos" c'est-à-dire en "conditions statiques".

Les valeurs des résistances statiques d'entrée et de sortie peuvent être déterminées à l'aide des courbes caractéristiques du transistor, sans avoir à faire appel au circuit de la figure 1. Pour déterminer la résistance Re, nous avons vu qu'il fallait connaître la tension VBE. Cette dernière ne peut donc plus être négligée comme c'était le cas dans le calcul de la polarisation. Les familles de courbes caractéristiques de collecteur ne suffisent plus maintenant. Nous devons faire appel à d'autres courbes qui contiennent VBE.

Les constructeurs de transistors, donnent souvent les courbes VBE – IB (caractéristique d'entrée) et VBE – VCE (courbes mutuelles de tension). Un exemple de courbes caractéristiques complètes, relatives à un certain type de transistor en montage Emetteur commun, est donné à la figure 2.

Vous voyez dans le premier quadrant (en haut à droite) les courbes caractéristiques du collecteur. Dans le deuxième quadrant (en haut à gauche), figure la caractéristique mutuelle de courant que nous avons vue dans les leçons précédentes. Une nouvelle caractéristique est reportée dans le troisième quadrant (en bas à gauche), c'est celle qui contient la tension VBE ; c'est la caractéristique d'entrée VBE – IB relative à une tension de collecteur de 4,5 V. Dans le quatrième quadrant (en bas à droite) vous trouvez VBE – VCE avec IB comme paramètre.

Nous disposons ainsi d'un système à quatre grandeurs VCE, IC, VBE, IB. Chacun des demi-axes est donc commun à deux quadrants adjacents.

Il faut tout d'abord, fixer le point de fonctionnement (point de repos) qui nous intéresse. Prenons un exemple. Soit le point de fonctionnement qui correspond aux valeurs suivantes : VCE = 4,5 V et IB = 50µA. C'est le point A du quadrant I.

Traçons maintenant l'horizontale passant par le point A. Celle-ci coupe l'axe vertical IC au point 2,8mA. Le courant de collecteur est donc IC = 2,8mA. La résistance de sortie est donc :

Rs = 4,5/2,8 = 1,61kΩ

Pour calculer la résistance d'entrée, il faut déterminer la tension VBE relative à ce point de fonctionnement. Il suffit pour cela de tracer par le point A une verticale qui rencontre dans le quadrant IV, la courbe IB = 50µA au point D. Si l'on trace maintenant par le point D, une horizontale cette dernière coupe l'axe vertical VBE au point 162mV. La valeur de Re est donc :

Re = 162/50 = 3,24kΩ

Le point D du quatrième quadrant et le point A du premier représentent tous les deux le point de fonctionnement considéré avec la seule différence que dans le quadrant I on lit sur les axes de coordonnées la tension et le courant de collecteur, tandis que dans le quadrant IV, on lit encore la tension du collecteur sur l'axe horizontal et la tension de base sur l'axe vertical.

Le même point de fonctionnement peut encore être représenté dans les quadrants II et III respectivement par les points B et C. Les points B et C se trouvent sur la caractéristique VCE = 4,5 V, ce qui signifie que le point de fonctionnement correspond bien à une tension de collecteur de 4,5 V et que le courant de polarisation de base est 50µA.

Nous pouvons donc en conclure, qu'en fixant pour un transistor le point de fonctionnement, celui-ci est représenté par quatre points distincts A, B, C, D, (figure 2), un dans chaque quadrant. Ces quatre points sont toujours disposés aux sommets d'un rectangle, dont les côtés (en pointillés sur la figure 2) coupent les quatre demi-axes aux valeurs des quatre grandeurs électriques (VCE, IC, VBE, IB) qui caractérisent le point de fonctionnement considéré.

Remarquons encore, que pour déterminer les résistances d'entrée et de sortie, deux points sont surtout intéressants : A et C. En effet en traçant par le point A une horizontale et une verticale nous lisons directement les valeurs VCE et IC qui déterminent Rs. De la même manière, en traçant par le point C, une horizontale et une verticale, nous trouvons VBE et IB nécessaires pour le calcul de Re.

Tout ce que je viens de vous expliquer, était valable pour le montage en émetteur commun. Nous pouvons refaire le même raisonnement en ce qui concerne le montage en base commune, et déterminer une résistance d'entrée et une de sortie.

Il faut souligner que pour le montage en base commune, les grandeurs d'entrée sont la tension émetteur-base VEB et le courant d'émetteur IE ; les grandeurs de sortie sont la tension collecteur-base VCB et le courant de collecteur IC. Nous aurons donc :

Re = VEB/IE  et  Rs = VCB/IC

Ces résistances peuvent encore être déterminées sur les courbes caractéristiques du transistor qui doivent correspondre maintenant au montage base à la masse. On procédera de façon analogue à ci-dessus.

1 – 2 RÉSISTANCES D'ENTRÉE ET DE SORTIE EN COURANT ALTERNATIF

Soit encore le même circuit (figure 1) et supposons que nous avons réglé RB et PC de façon que le transistor travaille en un certain point de sa caractéristique. Soient V'BE, I'B, V'CE et I'C les valeurs des tensions et des courants indiqués par les appareils de mesure.

Agissons sur RB de façon à porter le courant de base, de I'B à une valeur plus grande I''B. La tension base-émetteur va subir une augmentation, et V1 n'indiquera plus la valeur V'BE mais une valeur plus grande V''BE.

En d'autres termes, en agissant sur RB nous provoquons une certaine augmentation du courant de base, dont la valeur est : I''B – I'B ce qui provoque une certaine augmentation de la tension base-émetteur : V''BE – V'BE.

On peut alors définir une Résistance dynamique d'entrée ou Résistance d'entrée en courant alternatif que l'on indique par re et qui est :

re = (accroissement de VBE)/(accroissement de IB)

Nous pouvons dire encore, que l'augmentation de IC (provoquée par l'augmentation de IB) détermine une diminution de la tension VCE. C'est ce qui arrive : il faut donc avant de lire sur les appareils de mesure les valeurs I''B et V''BE, ramener VCE à sa valeur initiale en agissant sur PC. Ceci signifie donc, que les augmentations du courant et de la tension de base doivent être faites en maintenant constante la valeur de la tension du collecteur. En effet la tension du collecteur a toujours une certaine réaction sur la valeur du courant et de la tension de la base. Si nous voulons donc que les augmentations des grandeurs d'entrée ne soient pas perturbées par les variations de la tension de sortie (tension de collecteur) il nous faut maintenir cette dernière constante.

Par analogie, agissons maintenant sur PC de façon à faire subir à la tension du collecteur, une certaine augmentation en la portant de la valeur V'CE à V''CE. Nous aurons donc une augmentation du courant de collecteur et aussi une augmentation du courant de base. Nous agirons donc sur RB pour ramener le courant de base à sa valeur initiale I'B. Nous lirons donc sur I2, la valeur I''C et déterminerons ainsi l'augmentation de IC qui sera donc :

I''C – I'C

On peut alors définir une Résistance dynamique de sortie (ou en courant alternatif), qui sera indiqué par rs et dont la valeur sera donnée par :

rs = (accroissement de VCE)/(accroissement de IC )

Le nom de "résistance en courant alternatif" ou de "résistance dynamique" donné à la résistance d'entrée et de sortie que nous venons de définir, dérive du fait que ces valeurs sont celles que présentent le transistor au passage du courant alternatif (superposé au courant continu de polarisation) qui constitue soit le signal à amplifier appliqué à l'entrée du transistor, soit le signal amplifié prélevé à la sortie.

Vous assimilerez mieux toutes ces notions, lorsque vous aurez étudié plus tard les amplificateurs. Pour le moment, il suffit de savoir que le transistor se comporte de façon différente, selon qu'il s'agit du courant continu de polarisation, ou du courant alternatif que constitue le signal, et que les valeurs des résistances en courant continu et en courant alternatif diffèrent, peu en général, mais diffèrent toujours.

Pour se faire une idée sur les différences présentées par ces valeurs, il suffit de calculer re et rs pour le même point de fonctionnement considéré dans l'exemple précédent. Nous aurons ainsi un exemple de la façon dont il faut opérer sur les caractéristiques pour déterminer les valeurs des résistances dynamiques d'entrée et de sortie.

Pour déterminer re il faut provoquer une augmentation de IB et voir de combien augmente VBE en maintenant la tension de collecteur constante. Si l'on opère sur les caractéristiques d'entrée, ceci signifie que le point de fonctionnement C de la figure 2 va se déplacer sur la courbe qui a pour paramètre, la valeur de la tension de collecteur 4,5 V (c'est la valeur en effet qui correspond au point de fonctionnement considéré).

Si l'on augmente le courant de base de 50µA à 70µA, le point C vient en C' comme indiqué sur la figure 3. La tension VBE augmentera de 162mV à 177mV. La valeur de re relative au point de fonctionnement C sera alors :

re = (accroissement de VBE)/(accroissement de IB ) = (177-162)/(70-50 ) = (15mV)/(20µA) = 0,75kΩ

D'une façon analogue on peut déterminer la résistance dynamique de sortie en opérant sur les caractéristiques de collecteur. Supposons que l'on augmente la tension du collecteur de 4,5 V à 6,5 V en maintenant constante la valeur du courant de base : le point A se déplace en A' et reste encore sur la caractéristique de paramètre IB = 50µA (figure 4).

En conséquence d'une telle augmentation de VCE, le courant de collecteur passe de 2,8mA à 3,1mA comme on peut le voir sur la figure 4.

On a donc :

rs = (accroissement de VCE)/(accroissement de IC ) = (6,5-4,5)/(3,1-2,8 ) = (2 V)/(0,3mA) = 6,67kΩ

Comme vous pouvez le vérifier en comparant les résultats obtenus avec ceux de l'exemple précédent, le transistor, pour le même point de fonctionnement, présente des résistances d'entrée et de sortie différentes, en courant continu et en courant alternatif. En particulier, il présente une résistance d'entrée plus grande en courant continu (3kΩ au lieu de 0,75kΩ), tandis que la résistance de sortie est plus faible (toujours en courant continu) : 1,61kΩ au lieu de 6,67kΩ.

De même, pour le montage en base commune, on peut définir une résistance d'entrée et une en sortie. Pour déterminer leur valeur, on opèrera sur les caractéristiques d'entrée, ou celles du collecteur mais relatives au montage en base commune ; on pourra aussi mesurer les accroissements des tensions et des courants d'entrée et de sortie avec un montage base à la masse.

1 – 3 PARAMÈTRES HYBRIDES

Les paramètres "Hybrides" sont au nombre de quatre pour les transistors basse fréquence et généralement indiqués par la lettre "h". Pour les distinguer, on utilise des indices formés de deux chiffres. Ainsi les quatre paramètres sont indiqués de la façon suivante : h11, h12, h21, h22. Ces symboles se lisent "h un-un ; h un-deux ; h deux-un ; h deux-deux".

Les paramètres étant relatifs à un montage donné, on aura une série de ceux-ci pour le montage en base commune, et une pour celle en émetteur commun. Il faut donc encore distinguer à quel montage ils correspondent, pour cela, l'indice est complété par la lettre "b" dans le premier cas et "e" dans le second.

On aura ainsi pour le montage en base commune, les paramètres h11b, h12b, h21b, h22b, et pour le montage émetteur commun, les paramètres h11e, h12e, h21e, h22e.

La définition de chacun des paramètres est la même pour les deux montages : le procédé pour les déterminer est le même. Pour simplifier, je vous expliquerai en détail, le montage émetteur commun seulement.

Considérons encore le schéma de la figure 1, et supposons que le transistor travaille au point de fonctionnement désiré après avoir réglé convenablement RB et PC. Nous voulons déterminer les valeurs des paramètres hybrides pour ce point.

Faisons subir à IB une légère augmentation en maintenant constante la valeur de la tension du collecteur (en retouchant PC si nécessaire) et appelons i1 la valeur de cet accroissement. Par analogie, appelons v1 la valeur correspondante de l'accroissement de la tension de base et i2 l'accroissement du courant de collecteur. Ces accroissements sont indiqués sur le schéma de la figure 5.

Les paramètres h11e et h21e sont définis par les formules suivantes :

h11e = v1/i1 et h21e = i2/i1

On peut ainsi voir ce qu'indiquent ces paramètres, ou comme on dit, quelle est leur signification physique. Ainsi, le paramètre h11e n'est autre que la résistance d'entrée en courant alternatif. En effet, sa valeur est donnée par le rapport entre l'accroissement de VBE et l'accroissement de IB, c'est-à-dire qu'il est défini exactement comme l'était la résistance d'entrée dans le paragraphe précédent. La valeur de h11e est donc donnée en Ω (ou en kΩ) et est exprimée par la même unité de mesure que la résistance.

Prenons le paramètre h21e. Il exprime le rapport de l'accroissement du courant de collecteur à l'accroissement du courant de base. Il exprime donc de combien de fois l'accroissement de IC est plus grand que l'accroissement correspondant de IB qui l'a provoqué. Mais si nous nous rappelons la définition du coefficient d'amplification de courant, nous voyons tout de suite que h21e n'est autre que le coefficient β.

Pour déterminer les deux autres paramètres hybrides, considérons une fois de plus le schéma de la figure 1 et provoquons un accroissement de la tension du collecteur en agissant sur PC et retouchons RB pour revenir à la valeur de IB de départ. Appelons encore v2, i2 et v1, les accroissements respectifs de la tension du collecteur, du courant de collecteur et de la tension de base, comme indiqué sur la figure 6.

Les valeurs de h22e et de h12e sont données par les formules :

h22e = i2/v2  et  h12e = v1/v2

La signification physique de ces paramètres est immédiate. Le paramètre h22e est donné par le rapport de l'accroissement du courant de collecteur à l'accroissement de la tension du collecteur c'est-à-dire qu'il est défini exactement, mais de façon inverse, comme était définie auparavant la résistance de sortie en courant alternatif.

Étant donné que l'inverse d'une résistance est une conductance le paramètre h22e exprime donc la conductance de sortie du transistor en courant alternatif. Sa valeur peut donc être exprimée en unité de conductance, c'est-à-dire en Siemens (S) ou en millisiemens (mS) ou en microsiemens (µS) ; elle peut aussi être exprimée en mho (mot inverse du mot ohm), mais peut aussi être donnée en mA/V (c'est-à-dire en milliampère par volt, unité tout à fait équivalente au millisiemens) ou en µA/V (équivalente à µS).

Enfin, le paramètre h12e est donné par le rapport de l'accroissement de la tension de base à l'accroissement de la tension de collecteur qui l'a provoqué. Il indique donc de combien de fois l'accroissement de VBE est plus grand que l'accroissement de VCE. Le paramètre est appelé "coefficient de réaction de tension" puisqu'il exprime l'influence de la tension de sortie sur la tension d'entrée.

En général, la tension d'entrée est peu influencée par la tension de sortie et ainsi l'accroissement de VBE est toujours beaucoup plus faible que l'accroissement de VCE. Ceci signifie que h12e est toujours très petit, de l'ordre de quelques millièmes ou même moins.

Si l'on reprend le même raisonnement avec un circuit en base commune, on peut définir les paramètres hybrides h11b, h21b, h12b, h22b et trouver qu'en particulier h21b est équivalent au coefficient α.

En conclusion, nous appellerons :

D'autre part, il faut se rappeler que les deux premiers paramètres doivent être mesurés en maintenant constante la tension de sortie tandis que les deux autres seront mesurées en maintenant constant le courant d'entrée.

Les valeurs ainsi obtenues sont valables uniquement pour le point de fonctionnement considéré, à partir duquel on a fait les accroissements de tension et de courant.

On peut remarquer encore que le nom "hybride" donné à ces paramètres dérive du fait que ceux-ci ne sont pas homogènes en ce qui concerne leurs unités de mesure. En effet, tandis que deux de ceux-ci (h12et h21) sont donnés par des nombres purs (on dit "sans dimension") le premier (h11) est exprimé en unités de résistance et le dernier (h22) en unités de conductance.

En observant les formules qui définissent les différents paramètres hybrides on peut enfin remarquer que le nombre utilisé en indice pour les distinguer apparemment mystérieux, est en réalité formé par les nombres qui indiquent respectivement les grandeurs qui se trouvent au-dessus (numérateur) et en dessous (dénominateur) de la barre de fraction.

Comme le nombre 1 se réfère à l'entrée et 2 à la sortie, h11 signifie que l'on traitre du paramètre obtenu comme étant le rapport entre deux grandeurs d'entrée. Par analogie, h21, h12, h22 indiquent les paramètres obtenus comme étant le rapport respectivement entre une grandeur de sortie et une d'entrée, entre une d'entrée et une de sortie et enfin entre deux grandeurs de sortie.

Quelquefois, les paramètres sont distingués par d'autres indices. h11est indiqué par hi en ce sens qu'il représente la résistance d'entrée ("i" étant la première lettre de "input", terme anglais signifiant "entrée"). h21est indiqué par hf en ce sens qu'il représente l'amplification que l'on a dans le sens "direct", c'est-à-dire l'amplification que subit un courant en passant de l'entrée à la sortie ("f" étant le commencement de "forward" = "direct"). h12est indiqué par hr, car il exprime une réaction dans le sens "inverse", c'est-à-dire qui se manifeste entre la tension de sortie et celle d'entrée ("r" étant le début de "reverse" = "inverse"). h22 est indiqué par ho en ce sens qu'il indique une conductance de "sortie" ("o" étant le début de "output" = "sortie").

A tension de sortie constanteh11 = résistance d'entréehi : input
h21 = coefficient d'amplification de couranthf : foward
A courant d'entrée constanth12 = coefficient de réaction de tensionhr : reverse
h22 = conductance de sortieho : output

1 – 4 VALEURS DES PARAMÈTRES HYBRIDES ET LEUR VARIATION EN FONCTION DU POINT DE FONCTIONNEMENT

Les propriétés d'un transistor dépendent de façon plus ou moins marquée du point de fonctionnement de celui-ci ; on peut donc prévoir que les paramètres hybrides eux aussi vont dépendre du point de fonctionnement, c'est-à-dire qu'ils vont varier lorsque celui-ci va se déplacer.

Pour cette raison, lorsque l'on donne les valeurs des paramètres hybrides il faut toujours bien préciser à quel point de fonctionnement ils se réfèrent. Ainsi par exemple, lorsque le constructeur donne les caractéristiques d'un transistor, il a toujours soin de préciser le point de fonctionnement pour lequel celles-ci ont été relevées, et indique s'il s'agit d'un montage en émetteur commun ou en base à la masse.

Exemple

Montage en émetteur communMontage en base commune
h11e = 0,8kΩh11b = 17Ω
h21e = β = 47h21b = α = 0,979
h12e = 0,00054h12b = 0,0008
h22e = 80µA/Vh22b = 1,6µA/V

A la lecture de ces valeurs, on peut remarquer tout de suite l'énorme différence dans les résistances d'entrée et le coefficient d'amplification de courant lorsque l'on passe d'un montage à l'autre.

D'autre part on remarquera que la conductance de sortie est plus grande dans le montage en émetteur commun, ce qui signifie que la résistance de sortie est plus faible (12,5kΩ correspondant à 80µA/V, contre 625kΩ correspondant à 1,6µA/V).

En effet :

1/(80 x 10-6) = 106/80 = 12.500Ω = 12,5kΩ

et

1/(1,6 x 10-6) = 106/1,6 = 625.000Ω = 625kΩ

Dans les deux cas par contre on a une valeur très faible de h12 ; ainsi par exemple pour le montage en émetteur commun, on a h12e  = 0,00054 ce qui signifie qu'un accroissement de la tension du collecteur de 1 V provoque un accroissement de la tension de base de 0,00054 V soit de 0,54mV seulement.

Pour avoir les valeurs des paramètres hybrides relatifs à d'autres points de fonctionnement, il faut faire appel à des diagrammes que l'on trouve dans les catalogues de transistors. Ces diagrammes sont relatifs au type de transistor considéré et ne sont donnés en général que pour le montage en émetteur commun, car le plus utilisé en pratique.

L'exemple d'un tel graphique est donné à la figure 7. Les deux graphiques de la figure 7 sont relatifs à un transistor basse fréquence de moyenne puissance et servent à passer du point de fonctionnement VCE = 2 V et IC = 3mA à un point quelconque dans le champ des possibilités d'un tel transistor.

Le diagramme de la figure 7-a tient compte du courant IC du nouveau point de fonctionnement, tandis que la figure 7-b tient compte de la tension VCE.

On désire par exemple calculer les paramètres hybrides pour le point de fonctionnement VCE = 9V, IC = 7mA. On cherche alors sur la figure 7-a, la valeur IC = 7mA et on lit sur l'échelle verticale en correspondance de la courbe h11e, la valeur HI = 0,63. Sur la figure 7-b, en correspondance de la valeur 9V lue sur l'échelle horizontale, on lit sur l'échelle verticale, toujours pour la courbe h11e, la valeur HV = 1,05.

La valeur h'11e, relative au nouveau point de fonctionnement, sera donnée par la formule suivante où h11e est la valeur relative au point de fonctionnement de départ :

h'11e = h11e x HV x HI = 0,8 x 0,63 x 1,05 = 0,8 x 0,662 = 0,53kΩ

En procédant de la même façon pour les autres paramètres, on trouve :

pour h21e :

HI = 0,85 ; HV = 1,1 d'où h'21e = h21e x 0,85 x 1,1 = 47 x 0,935 = 44 environ

pour h12e :

HI = 0,9 ; HV = 0,64 d'où h'12e = h12e x 0,9 x 0,64 = 0,00054 x 0,576 = 0,00031 environ

pour h22e :

HI = 2 ; HV = 0,6 d'où h'22 e = h22e x 2 x 0,6 = 80 x 1,2 = 96µA/V.

Vous pouvez voir à l'aide de ces diagrammes, comment évoluent en général les paramètres hybrides relatifs au montage en émetteur commun. L'allure de ces courbes est générale pour les transistors BF de faible puissance.

En observant le diagramme de la figure 7-a, on peut constater que la résistance d'entrée h11e du transistor diminue très rapidement lorsque IC croît. La conductance de sortie h22e croît au contraire très rapidement, mais comme la conductance est l'inverse d'une résistance, on en déduit que la résistance de sortie diminue elle aussi notablement, lorsque le courant de collecteur augmente.

Le coefficient d'amplificateur β (h21e) reste au contraire, pratiquement constant.

Par analogie si l'on observe le diagramme de la figure 7-b, on voit que la résistance d'entrée et le coefficient β restent sensiblement constants lorsque la tension de collecteur augmente, tandis que la conductance de sortie diminue légèrement, ce qui signifie que la résistance de sortie augmente un peu.

1 – 5 INFLUENCE DE LA TEMPÉRATURE SUR LES PARAMÈTRES HYBRIDES

Les paramètres hybrides, comme les caractéristiques d'un transistor, varient en fonction de la température à laquelle se trouve soumis le transistor, ou mieux en fonction de la température de sa jonction. Les valeurs indiquées sur les catalogues, se réfèrent en général à une température de 25°C (ou celle indiquée).

Je vous ai reporté à la figure 8 un diagramme du type de celui de la figure 7, qui donne le coefficient HT. C'est par la valeur de ce coefficient HT qu'il faut multiplier les valeurs des paramètres hybrides, relatifs à 25°C, pour obtenir celles relatives à une température comprise entre – 60°C et + 80°C. Un tel diagramme est relatif à un transistor basse fréquence de faible puissance.

Vous pouvez voir sur la figure 8 qu'avec l'augmentation de la température au-dessus de 25°C, tous les paramètres croissent, mais tandis que la résistance d'entrée et le coefficient d'amplification augmentent peu, la conductance de sortie et le coefficient de réaction augmentent beaucoup.

Ainsi par exemple si l'on passe de 25°C à 70°C, la conductance de sortie devient quatre fois et demie plus grande, c'est-à-dire qu'elle passe de 80µA/V à 360µA/V, ce qui signifie que la résistance de sortie devient quatre fois et demie plus petite. Pour le même accroissement de température, le coefficient β augmente seulement de 1,1 environ, c'est-à-dire qu'il passe de 47 à 52 environ

Par contre si la température diminue en dessous de 25°C, la résistance d'entrée et le coefficient d'amplification diminue graduellement, tandis que la conductance de sortie et le coefficient de réaction recommencent à grimper. Ainsi par exemple, pour une température de – 25°C, h21e diminue de 0,78 fois environ, c'est-à-dire qu'il passe de 47 à 36,6.

1 – 6 DÉTERMINATION DES PARAMÈTRES HYBRIDES SUR LES COURBES CARACTÉRISTIQUES

La valeur des paramètres hybrides des détermine en opérant sur les courbes caractéristiques du transistor, considérant évidemment le point de fonctionnement qui nous intéresse.

Pour déterminer le paramètre h11e, vous devez procéder comme il a été indiqué sur la figure 3, car comme nous l'avons vu précédemment, ce paramètre correspond à la résistance d'entrée du transistor en courant alternatif.

Pour déterminer le paramètre h22e, vous procéderez comme il a été indiqué à la figure 4, sauf que maintenant, il faudra faire le rapport entre l'accroissement du courant et celui de la tension de collecteur, car ce paramètre correspond à l'inverse de la résistance de sortie.

Pour déterminer le paramètre h21e, vous pourrez opérer sur les courbes caractéristiques du collecteur suivant la définition même de ce paramètre. Il faudra déterminer l'accroissement du courant de collecteur provoqué par un accroissement du courant de base, quand la tension de collecteur reste constante.

Considérons le point de fonctionnement déjà fixé précédemment, c'est-à-dire le point A sur la figure 9. Déplaçons ce point vers le haut sur une droite verticale, de façon à ce que la tension de collecteur reste toujours la même et égale par exemple à 4,5 V. Si nous passons de la caractéristique 50µA à celle de 70µA, c'est-à-dire si le point s'est déplacé de A en A', nous aurons obtenu un accroissement du courant de base de 70 – 50 = 20µA et telle sera la valeur de i1 dans la formule définissant h21e.

L'accroissement correspondant de IC sera la différence entre les valeurs du courant de collecteur lues sur l'échelle verticale pour les points A' et A. Nous aurons donc :

i2 = 4 – 2,8 = 1,2mA = 1.200µA

La valeur de h21e est alors immédiate, nous rappelant que les valeurs des deux courants doivent être exprimées toutes les deux dans les mêmes unités,

h21e = 1.200/20 = 60

Si le point de fonctionnement considéré tombe entre deux caractéristiques, comme par exemple le point F de la figure 9, il n'est pas nécessaire de procéder à des opérations compliquées d'interpolation, mais il suffit de considérer deux points, un au-dessus et l'autre en-dessous de F qui tombent sur deux caractéristiques différentes. Ainsi, il suffira de prendre par exemple les points F' et F'' et d'opérer comme précédemment.

Il faut encore remarquer, qu'en passant d'une caractéristique à celle située immédiatement au-dessus, l'augmentation de IB (c'est-à-dire i1) est toujours la même (par exemple dans le cas de la figure 9, i1 = 10µA) car les caractéristiques de IB différant toutes de 10µA, tandis que l'accroissement correspondant de IC (c'est-à-dire i2) sera d'autant plus grand que les caractéristiques seront plus éloignées entr'elles.

Ceci signifie donc que plus les caractéristiques seront éloignées, plus grande sera la valeur de h21e puisque la valeur de i2 sea plus élevée, i1 restant toujours le même.

Si donc, l'on observe les courbes de la figure 9, on constate qu'en déplaçant le point de fonctionnement vers la droite (ce qui équivaut à augmenter la tension de collecteur), les caractéristiques s'allongent : h21e augmente ce qui est en accord avec les résultats du diagramme de la figure 7-b, pour la courbe relative à h21e.

Il nous reste encore à déterminer le paramètre h12e. A ce propos il faut tout de suite noter que ce paramètre est assez mal déterminé à cause de sa valeur extrêmement faible. Considérant en effet le point de fonctionnement D (sur les caractéristiques mutuelles de tension de la figure 2), il y a lieu de provoquer un accroissement de la tension de collecteur (en maintenant le courant de base constant) et de déterminer l'accroissement correspondant de la tension de base.

Ceci signifie donc qu'il faut déplacer le point de fonctionnement D sur la caractéristique 50µA, en l'amenant par exemple au point D' (figure 10) : l'accroissement de VCE, c'est-à-dire v2, est alors de 2 volts.

L'accroissement correspondant de VBE, c'est-à-dire v1, doit être déterminé en lisant sur l'échelle verticale les valeurs de la tension de base respectivement aux points D et D'.

Étant donné que les caractéristiques mutuelles de tension, pour le montage en émetteur commun, sont pratiquement des droites horizontales, comme on peut le voir sur la figure 10, il est donc très difficile, sinon impossible d'évaluer l'accroissement de VBE.

2 PARAMÈTRES RÉSISTANTS (OU "r")

D'autres paramètres sont parfois utilisés pour les transistors de basse fréquence et de faible puissance : on les appelle paramètres résistants ou "r". Cette dénomination provient du fait, qu'ils sont tous exprimés en unités de résistances, c'est-à-dire en ohms ou en kΩ.

Ce système est constitué de trois paramètres résistants proprement dits et du coefficient α. Ils sont représentés par le symbole re, rb et rc et indiquent les valeurs des résistances internes du transistor que présentent séparément l'émetteur, la base et le collecteur. Comme une telle séparation des trois résistances internes n'est pas possible du point de vue physique, on voit tout de suite que les paramètres "r" ne peuvent être mesurés en pratique. Leur emploi ne se justifie en premier lieu que par une certaine simplification des calculs.

L'avantage essentiel est purement du point de vue calculs, car avec ces paramètres on obtient des formules plus simples pour établir le projet d'un amplificateur ou d'un circuit quelconque.

Un autre avantage est qu'ils ne changent pas de valeur lorsque l'on passe d'un montage en émetteur commun à celui en base à la masse, comme cela arrivait avec les paramètres hybrides.

Les formules qui permettent de calculer les paramètres "r" en partant des paramètres hybrides relatifs au montage en base commune, sont indiqués ci-dessous :

Si nous remplaçons dans ces formules, les valeurs des paramètres hybrides que nous avons vus jusqu'ici, nous obtenons les valeurs des paramètres "r" relatifs au même point de fonctionnement déjà considéré à savoir VCE = 2 V – IC = 3mA.

Si nous exprimons h11b en Ω et h22b en µA/V, nous obtenons rb et re en Ω, tandis que rc est exprimé en kΩ.

rb = (1.000.000 x h12b)/h22b  = (1.000.000 x 0,0008)/1,6 = 800/1,6 = 500Ω

re = h11b – rb x (1 – α) = 17 – 500 x (1 - 0,979) = 17 – 500 x 0,021 = 17 – 10,5 = 6,5Ω

rc = 1.000/h22b  = 1.000/1,6 = 625kΩ

Quelquefois dans les catalogues, on ne trouve que les valeurs des paramètres "r" et le coefficient α, tandis que l'on désirerait connaître les valeurs des paramètres hybrides relatifs au montage en base commune, ou en émetteur commun.

On peut calculer ces valeurs par les formules que je vous donne ci-dessous où l'on doit exprimer rb et re en Ω et rc en kΩ.

De cette manière, les paramètres h11b et h11e seront exprimés en Ω et les paramètres h22b et h22e en µA/V.

Pour le montage en base commune, on aura :

Pour le montage en émetteur commun, on aura :

3 – PARAMÈTRES DES TRANSISTORS POUR LES FRÉQUENCES ÉLEVÉES

Les quatre paramètres que nous avons vus jusqu'ici, ne sont pas suffisants pour déterminer complètement les propriétés d'un transistor lorsque la fréquence est élevée, c'est-à-dire pour les fréquences radio ou celles qui sont utilisées dans les étages changeurs de fréquence, ou de fréquence intermédiaire des récepteurs.

On ne peut absolument pas dans ce cas, négliger par exemple la capacité des jonctions qui, quoique de valeur relativement faible, présente aux fréquences élevées, une réactance assez basse modifiant les résistances d'entrée et de sortie du transistor.

Ainsi, il devient évident, qu'il faudra tenir compte de la capacité des jonctions, ou des capacités équivalentes, ce qui va porter à 6, le nombre total de paramètres.

Comme vous pouvez le voir sur la figure 11, dans le montage en base commune, la capacité d'entrée coïncide avec la capacité de la jonction émetteur-base, et celle de sortie avec la capacité de la jonction collecteur-base. Nous avons déjà parlé de ces capacités au moment où nous avons étudié les jonctions.

Etant donné la complexité du problème et la non homogénéité des paramètres selon les différents fabricants de transistors, nous n'entreprendrons leur étude que plus tard, au moment où nous arriverons aux circuits travaillant en H.F.


RÉPONSES AUX EXERCICES DE RÉVISION SUR LA 11ème LEÇON THÉORIQUE

1 – Parce qu'il se comporte comme le courant inverse d'une diode à jonction.

2 – La valeur de ICBo se trouve approximativement doublée chaque fois que la température augmente de 10°C.

3 – C'est dans le montage en émetteur commun, que le courant de collecteur est le plus influencé par la température.

4 – L'élévation de la température, provoque un déplacement vers le haut des courbes caractéristiques de collecteur et un espacement plus grand entre celles-ci.

5 – Le coefficient de stabilité S est défini comme le quotient entre l'accroissement de IC relatif à une augmentation donnée de la température et l'accroissement correspondant de ICBo.

6 – Pour le montage en base commune, on a toujours S = 1, tandis qu'en émetteur commun on a S = (β + 1).

7 – Avoir S égal par exemple à 10, signifie que pour une augmentation donnée de la température du transistor, l'augmentation du courant IC sera dix fois plus grande que celle de ICBo.

8 – Pour réduire l'augmentation du courant de collecteur provoquée par la température, on monte des circuits particuliers de polarisation qui utilisent la contre-réaction de collecteur et d'émetteur en réduisant de façon opportune le courant de base.

9 – Il est nécessaire de stabiliser du point de vue thermique, le point de fonctionnement d'un transistor, pour éviter que celui-ci n'atteigne la zone de saturation ou, pire encore, la zone où la dissipation du collecteur serait excessive.


EXERCICES DE RÉVISION SUR LA 12ème LEÇON THÉORIQUE

1 – Quelle est la différence entre la résistance statique et la résistance dynamique ?

2 – Combien y a-t-il de paramètres hybrides ?

3 – Quelle est la signification physique des paramètres hybrides ?

4 – En quelles unités de mesure, sont donnés les paramètres hybrides ?

5 – Que doit-on toujours bien spécifier, lorsque l'on donne la valeur de ces paramètres ?

6 – Comment peut-on obtenir la valeur des paramètres hybrides ?

7 – Comment varient les paramètres hybrides, quand la température du transistor s'élève au-dessus de la température ambiante ?

8 – Peut-on mesurer pratiquement les paramètres "r" ?

9 – Quels sont les avantages des paramètres "r" par rapport aux paramètres hybrides ?

Fin de la leçon 12


LECON 13

TECHNOLOGIE DES SEMI-CONDUCTEURS

Dans les leçons précédentes, nous avons vu comment fonctionnait un transistor, dans quelles conditions il travaillait, et quelles en étaient les limites. Avec les notions qui ont été définies, il suffit de respecter les données du constructeur pour utiliser correctement les diodes et les transistors, et on peut ne pas se préoccuper du mode de fabrication de ceux-ci.

Mais il me semble qu'il est quand même très utile de connaître quelques notions de technologie afin de mieux comprendre certaines limites de fonctionnement, et savoir pourquoi, lorsque l'on doit établir le projet d'un circuit à transistors, il faut respecter les données particulières.

Les caractéristiques que nous avons examinées dépendent d'une façon générale des propriétés des semi-conducteurs ; mais en pratique la possibilité d'obtenir des semi-conducteurs qui auront des propriétés désirées est liée d'une manière déterminante, aux traitements physiques et chimiques des matériaux ainsi qu'aux précautions qui seront prises pendant les différentes phases mécaniques.

Ainsi, par exemple, la tension inverse maximum des diodes est déterminée par la résistivité des semi-conducteurs utilisés, c'est-à-dire fonction du degré de pureté des matériaux ; la fréquence de coupure des transistors est dûe, comme nous le verrons dans les prochaines leçons, au temps de transit des charges électriques, et la durée de ce temps dépend des dimensions géométriques de la base et de la distribution des impuretés dans la jonction ; la puissance que les diodes et les transistors peuvent supporter est liée directement à leurs dimensions ; la durée de vie des circuits réalisés dépendra donc du soin que l'on aura pris dans l'établissement du projet de ce montage.

Dans cette leçon nous étudierons la technique adoptée dans la fabrication du germanium et du silicium, qui sont les éléments les plus largement utilisés dans la production des dispositifs à semi-conducteurs ; nous examinerons ensuite, les opérations fondamentales de coupe des monocristaux et réserverons pour la prochaine leçon, l'étude de la technique de montage des diodes et des transistors.

1 – EXTRACTION ET RAFFINAGE DU GERMANIUM

1 – 1 FONTE

On trouve dans la nature, le germanium mélangé à d'autres éléments, à l'état de sel, mais jamais à l'état de métal pur.

On calcule que la croûte terrestre contient en moyenne 7 grammes de germanium par tonne, c'est-à-dire environ sept parties pour un million.

La quantité globale de germanium est beaucoup plus faible que celle du silicium qui est contenu dans la proportion de 277.200 parties pour un million, c'est-à-dire qu'il présente environ le ¼ du poids total de l'écorce terrestre.

D'autre part, la quantité du germanium est environ 14 fois supérieure à celle du mercure qui n'est pas considéré comme métal rare, et n'est pas non plus très inférieure à celle du plomb, métal très largement utilisé depuis l'antiquité. Toutefois, les minerais de germanium sont très éparpillés et il est difficile d'organiser une exploitation économique des gisements.

La Germanite qui est un sel de soufre de germanium et de cuivre, se trouve en abondance en Afrique du Sud occidentale seulement : l'Argirodite, sulfure de germanium et d'argent et l'Ultrabasite, sulfure de germanium, d'antimoine, de plomb et d'argent, sont dispersés dans des roches qui contiennent surtout d'autres minerais. On préfère donc extraire le germanium nécessaire aux industries des semi-conducteurs, par fonte des minerais que je viens de vous citer, peut-être moins riches, mais plus économiques.

Ainsi tout le germanium nécessaire aux besoins de l'électronique est tiré ses sous-produits des industries du carbone, du zinc et du cadmium. Les suies de certains carbone, les scories du zinc et du cadmium, peuvent contenir du germanium à l'état de bioxyde, c'est-à-dire combiné à de l'oxygène dans la proportion de un atome de germanium pour deux atomes d'oxygène.

Les différents procédés d'extraction du bioxyde des sous-produits cités ne sont pas très différents les uns des autres et donnent des pourcentages de germanium (environ 1%) à peu près équivalents ; ils peuvent donc être considérés comme également avantageux.

Les industries des Etats-Unis et de la Russie procèdent surtout à partir des suies de carbone, tandis que celles des pays européens procèdent à partir des blendes (sulfure de zinc).

A la figure 1, je vous ai représenté de façon schématique, les principales transformations chimiques qui ont lieu pendant les différents traitements en vue de l'extraction du bioxyde de germanium à partir des blendes et des suies.

Le bioxyde que l'on obtient est loin de posséder le degré de pureté nécessaire. Il contient de nombreux éléments d'impuretés qu'il faut éliminer par voie chimique avant d'extraire le germanium métallique.

Dans ce but, on transforme le bioxyde en tétrachlorure de germanium ; le tétrachlorure est mis en solution et distillé à plusieurs reprises, jusqu'à ce que les analyses révèlent un degré de pureté suffisant. Ensuite le tétrachlorure est versé dans de l'eau, où se forme par hydrolyse un bioxyde de germanium suffisamment pur.

1 – 2 REDUCTION DU BIOXYDE DE GERMANIUM

L'extraction du germanium métallique à partir du bioxyde se fait par un procédé chimique appelé Réduction.

Dans ce but, on lave le bioxyde avec de l'eau très pure, puis on le dessèche et le pulvérise en des particules minuscules qui prennent une splendide couleur blanche.

Cette poudre est placée dans une coupelle en graphite et introduite dans un four, schématisé à la figure 2.

On fait passer dans le tube à quartz un courant d'hydrogène pour qu'il y ait réduction.

Grâce à la résistance chauffante disposée autour du tube, on élève la température du four jusqu'à 650°C environ.

Dans ces conditions, l'hydrogène se combine à un des deux atomes d'oxygène contenus dans la molécule du bioxyde, et il se forme ainsi de l'eau à l'état de vapeur qui est évacuée par le courant d'hydrogène.

Après un certain temps (au minimum deux heures) on recueille dans la coupelle, au lieu du bioxyde, un nouveau composé de germanium : Le monoxyde qui est constitué en quantités égales d'atomes de germanium et d'oxygène, tandis que la proportion était avant de un pour deux.

Pour libérer le germanium métallique, on élève rapidement la température du four jusqu'à 1.000°C et en quelques minutes, les atomes restant d'oxygène se combinent avec l'hydrogène pour former encore de l'eau.

Le germanium, qui à la température de 1.000°C se présente à l'état liquide, est refroidi dans le même four, et à la fin de l'opération, on extrait de la coupelle, un barreau constitué par un aggloméré de petits cristaux, mais qui ne sont pas encore suffisamment purs pour être utilisés dans l'industrie.

1 – 3 RAFFINAGE DU GERMANIUM MÉTALLIQUE

Pour obtenir du germanium à un degré élevé de pureté indispensable pour les opérations suivantes, on introduit le barreau dans un four spécial représenté de façon schématique à la figure 3.

Le four est constitué par un long tube de quartz sur lequel sont placées des bobines reliées entre elles en série.

Le circuit de la bobine est alimenté par un générateur de courant à haute fréquence ; on a ainsi à l'intérieur du four, un champ magnétique variable, particulièrement intense sous chaque bobine. Par induction électromagnétique dans la zone du barreau se trouvant sous les bobines, il se forme des courants électriques très intenses qui provoquent une fusion locale du germanium.

La coupelle qui contient le barreau avance lentement d'une extrémité du four à l'autre ; quand la région de la tête du barreau passe sous la première bobine, le germanium est chauffé et fond à cet endroit, tandis que les régions voisines s'échauffent évidemment mais restent encore à l'état solide.

La coupelle avance lentement, et le germanium liquide se solidifie de nouveau, et la première zone de fusion se déplace vers l'autre extrémité du barreau.

Sous la seconde bobine, il se forme une autre zone de fusion qui comme la première va parcourir le barreau de la tête à la queue.

Le processus se renouvelle sous la troisième bobine puis sous toutes les autres, et il se forme ainsi autant de zones de fusion mobiles qu'il y a de bobines placées sur le tube de quartz. Lorsque la dernière zone de fusion a atteint la région de la queue du barreau, c'est-à-dire lorsque la coupelle arrive à la sortie du four, on sait qu'une bonne partie du germanium a atteint le degré de pureté voulu.

Il reste encore à voir comment on obtient le raffinage au moyen de ces zones de fusion mobiles.

1 – 4 PROCESSUS DE FORMATION DE LA ZONE DE FUSION MOBILE

Supposons que le barreau de germanium représenté schématiquement sur la figure 4, se déplace vers S indiqué par la flèche et que les deux frontières F1 et F2 de la zone de fusion se déplacent vers le point opposé s.

La partie avant F2 peut être comparée à un filtre poreux qui laisse passer le germanium et arrête les impuretés en les maintenant dans la zone de fusion.

C'est ce qui arrive pour les impuretés qui restent libres plus facilement dans un liquide que dans un solide.

Supposons que la concentration des impuretés dans le germanium qui redevient solide après son passage dans la zone de fusion soit Cs et que la concentration des mêmes impuretés dans la zone de fusion (liquide) soit C1 beaucoup plus grande que Cs.

En faisant le rapport entre les deux concentrations Cs⁄C1 on trouve par expérience que celui-ci reste constant pendant que la zone de fusion se déplace d'une extrémité à l'autre du barreau.

Ce rapport a une valeur déterminée pour chaque type d'impuretés et pour chaque type de semi-conducteur.

Cette valeur, appelée Coefficient de Répartition (ou Constante d'isolement) des impuretés dans le semi-conducteur peut servir à représenter l'action de raffinage de la partie avant de F2.

Le coefficient de répartition de l'antimoine dans le germanium est égal à 5/1.000 ; ceci exprime donc qu'à gauche de F2, on ne trouvera que cinq parties d'antimoine sur 1.000 parties qui resteront en solution dans la zone de fusion.

Pour le même antimoine, le coefficient de répartition dans le silicium est égal à 40/1.000 : ceci signifie donc qu'à travers F2 passeront 40 atomes d'antimoine sur 1.000 qui resteront dans la zone de fusion.

De ces résultats, nous voyons que l'action de raffinage de F2 sera moins marquée pour le silicium que pour le germanium.

Si nous considérons maintenant un autre type d'impuretés, l'indium par exemple, son coefficient de répartition dans le germanium est égal à 1,2/1.000 ; soit 12/10.000 ; ceci veut dire que 12 atomes d'indium passeront dans le germanium solide, à travers F2, tandis que 10.000 resteront dans la zone de fusion et qu'ainsi l'action de raffinage de F2 est plus marquée pour l'indium que pour l'antimoine.

Pour l'indium réparti dans le silicium, le coefficient de répartition est égal à 0,5/1000 : cinq atomes seulement d'indium resteront dans le silicium solidifié pour 10.000 qui resteront dans la zone de fusion.

Ainsi donc, pour cet élément d'impuretés et avec le procédé de la zone de fusion mobile, on pourra mieux raffiner le silicium que le germanium.

Nous avons vu, que tout le barreau de germanium était successivement parcouru par la zone de fusion. Nous sentons par intuition qu'à l'action de raffinage de la première zone, s'ajoute celle de la seconde puis celle de la troisième, etc… et que nous pouvons obtenir ainsi, un degré de pureté très grand. Avec un tel procédé il ne reste dans le germanium que quelques atomes d'impuretés, c'est-à-dire moins d'un atome sur 10 milliards d'atomes de germanium.

1 – 5 CONTRÔLE DE LA RÉSISTIVITÉ

Avant de passer aux opérations ultérieures il faut s'assurer que le raffinage du germanium est uniforme ; à cet effet, on contrôle la résistivité tout le long du barreau.

Si la résistivité est constante, la distribution des impuretés résiduelles est uniforme.

En pratique, on trouve que la résistivité du barreau est presque constante jusqu'aux deux tiers de la longueur à partir de sa tête, tandis qu'elle diminue rapidement dans le dernier tiers comme on peut le voir sur le graphique de la figure 5.

La diminution de la résistivité est dûe à la présence de toutes les impuretés récoltées et transportées par la zone de fusion mobile.

Après ce contrôle, on coupe la queue et on utilise seulement la partie présentant une résistivité constante.

2 – EXTRACTION ET RAFFINAGE DU SILICIUM

Le silicium est très répandu dans la nature sous forme de bioxyde (silice), de sel (silicate) et d'anhydride.

Nous avons déjà vu que cela représentait environ le quart de l'écorce terrestre ; mais il reste encore à préciser que malgré sa grande diffusion et bien que l'on connaisse depuis plus d'un siècle les différents procédés d'extraction du silicium à partir de ces minerais, la production en vue des besoins de l'électronique est sensiblement plus onéreuse que celle du germanium.

En effet avec les procédés classiques de réduction du bioxyde en chauffant les sables à 3.000°C en présence du coke, on obtient du silicium sous forme de polycristaux contenant des impuretés au taux de 2 à 3%. Or pour l'électronique, on doit obtenir du silicium très pur, avec des impuretés de moins de 0,5 ‰.

Les procédés qui permettent d'obtenir le degré de pureté voulu sont très longs et beaucoup plus coûteux que ceux permettant la réduction du bioxyde.

Un certain degré de pureté peut être obtenu en traitant par voie chimique du silicium de fabrication courante à l'aide d'acides chlorhydrique, sulfurique ou fluorhydrique ; mais actuellement, d'autres procédés sont utilisés qui partant d'un sel de silicium (le tétrachlorure) permettent d'obtenir des cristaux de très grande pureté.

Pour le raffinage des cristaux par voie physique, on utilise la méthode de la Zone de suspension qui est une variante de la méthode de la Zone de fusion décrite précédemment.

Le barreau est maintenu fixe, dans une position verticale (figure 6). Une spire mobile, parcourue par un courant à haute fréquence, se déplace lentement le long du tube de quartz et fait avancer le long du barreau la zone de fusion qui se trouve englobée entre deux tranches solides.

Le procédé est repris à plusieurs reprises d'une extrémité à l'autre du barreau, jusqu'à l'obtention du degré de pureté désiré.

Avec le silicium on ne peut utiliser des fours horizontaux (figure 3) car le silicium en fusion se combinerait avec le matériau de la coupelle et il y aurait introduction de nouvelles impuretés.

3 – INTRODUCTION DES IMPURETÉS DANS LE GERMANIUM ET LE SILICIUM

On a vu qu'avec les procédés de raffinage, on pouvait obtenir des barreaux de quelques décimètres de long (figure 5) et constitués de petits cristaux différemment orientés. On a obtenu des semi-conducteurs très purs, mais pour pouvoir les utiliser dans la fabrication des transistors et des diodes, il est nécessaire que les différents cristaux aient la même orientation dans un seul réseau cristallin, le Monocristal et il faut aussi "doper" le semi-conducteur c'est-à-dire y introduire des impuretés déterminées et dosées de façon à obtenir du germanium (ou du silicium) du type P ou N.

Les impuretés utilisées généralement pour obtenir un semi-conducteur P sont l'indium, l'aluminium, le galium, tandis que pour les semi-conducteurs N, on utilise de l'arsenic, du phosphore et de l'antimoine.

Habituellement, les monocristaux sont obtenus en introduisant à la surface du semi-conducteur en fusion, un cristal déjà parfaitement orienté, appelé "germe" (ou encore "amorce") et en faisant refroidir lentement la masse en fusion à partir de la zone de contact avec le germe.

Les impuretés qui auparavant étaient libres dans la masse en fusion, diffusent dans le monocristal pendant sa formation selon une loi qui dépend instant par instant de la rapidité de croissance du monocristal, de la concentration des impuretés dans la masse en fusion et de la constante de répartition des matériaux.

Dans le tableau de la figure 7, je vous ai reporté les valeurs moyennes des coefficients de répartition (constante d'isolement) du germanium et du silicium. Parmi les différentes valeurs, vous constatez que ce sont celles de l'indium qui sont les plus faibles : ceci indique que c'est la quantité d'indium qui diffuse dans le solide pendant le processus de recristallisation, que l'on peut contrôler avec le maximum de précision en ce sens que les doses à introduire dans la masse en fusion doivent être plus importantes pour obtenir le dopage et qu'ainsi on peut déterminer le poids avec le moins d'erreur possible.

Examinons maintenant les deux méthodes principales utilisées pour obtenir les monocristaux de germanium dopés et qui sont : le procédé de "Nivellement" et le procédé "Tchiokralski". L'obtention des monocristaux de silicium ne diffère en ligne générale, que par l'appareillage utilisé, car il faut éviter à tout prix que le silicium en fusion ne se recombine avec les matériaux des coupelles qui introduiraient ainsi des impuretés indésirables.

3 – 1 "NIVELLEMENT" PAR LA ZONE DE FUSION MOBILE

Le barreau de germanium polycristallin est placé dans une coupelle de quartz, avec le germe, un liant d'impuretés et du graphite disposés comme sur la figure 8-a.

La coupelle de quartz est elle-même placée dans un creuset en graphite qui est introduit dans un four à induction constitué comme précédemment d'un tube en quartz et d'une bobine H.F.

On amène le creuset de graphite sous la bobine de façon à faire fondre le liant d'impuretés et la région correspondant à la tête du barreau, mais non le germe dont la structure interne doit rester intacte.

En déplaçant lentement le creuset, on amène la zone en fusion vers la queue du barreau, et débute alors une opération de refroidissement contrôlée, en partant de la section en contact avec le germe.

Une grande partie des impuretés reste isolée dans la masse liquide, tandis que la région restante (rigoureusement contrôlée) se fond dans le monocristal et grâce à un refroidissement contrôlé et progressif, croît sur le réseau du germe en conservant la même orientation.

À la fin de l'opération, c'est-à-dire lorsque l'on a obtenu une recristallisation compète du barreau, on retire un monocristal où toutes les impuretés primitivement contenues dans le liant ont diffusé.

La répartition des impuretés n'est pas encore uniforme et la résistivité du monocristal varie en fonction de la distance à la tête comme l'indique le graphique de la figure 8-b.

Dans la première partie, jusqu'à 4 cm environ, la résistivité augmente graduellement, ce qui indique que la concentration des impuretés décroît ; dans la seconde partie, entre 4 et 10 cm, elle se maintient constante, ce qui implique que la répartition des impuretés est uniforme ; dans la dernière partie, la résistivité décroît rapidement vers zéro, car c'est dans cette région que se trouvent concentrées toutes les impuretés.

On utilise donc uniquement la région centrale du barreau, car on a besoin d'un semi-conducteur dont la résistivité soit constante en tous points.

3 – 2 PROCÉDÉ TCHIOKRALSKI

Le monocristal peut encore être obtenu par étirage vertical à partir d'une solution de germanium et d'impuretés, maintenue en fusion dans un creuset spécial en graphite.

L'appareillage nécessaire fut réalisé par le polonais TCHIOKRALSKI dont le nom fut donné à cette méthode particulière de fabrication.

La figure 9 illustre l'installation d'étirage vertical que l'on utilise de façon courante.

Dans le creuset, la masse liquide de germanium est maintenue à une température légèrement supérieure à celle qui correspond à la fusion.

Les impuretés sont introduites dans la solution à l'aide d'un petit tuyau. Un arbre tournant porte le germe et le place en contact avec la surface du liquide où un refroidissement local amorce l'opération de recristallisation.

En même temps, l'arbre se soulève lentement, de façon à ce que l'opération de cristallisation continue à se produire et détermine la "croissance" d'un monocristal orienté dans la direction de l'extraction.

Pour que les impuretés diffusent dans le monocristal, il faut encore prévoir une agitation continuelle de la masse en fusion, en imprimant à l'arbre une certaine vitesse de rotation. Il faut encore régler la vitesse de l'ascension, de façon à ne pas modifier la constante de répartition de chaque type d'impuretés.

Il faut de même contrôler la température à tout instant, car il suffit d'une variation de l'ordre de un degré centigrade pour compromettre toute la régularité de l'opération.

Avec l'appareillage décrit, il est possible d'obtenir des monocristaux dopés, alternativement du type P et du type N, en introduisant dans la solution, au moment voulu, l'impureté du type désiré.

Une autre méthode qui permet d'obtenir des monocristaux à régions alternativement P et N, consiste à régler la vitesse d'extraction en favorisant ainsi la diffusion d'un type d'impuretés par rapport à l'autre, qui sont mélangés simultanément dans la solution.

La figure 10 représente un monocristal à zones alternées. L'introduction des impuretés dans ces monocristaux nécessite un système de contrôle particulièrement rigoureux pendant l'opération d'extraction car il ne sera plus possible ultérieurement de modifier la structure des jonctions.

Les monocristaux à dopage uniforme (type P ou type N) obtenus par ce procédé, présentent une résistivité constante seulement dans la région centrale ce qui nécessite des contrôles rigoureux sur la résistivité, afin de limiter les régions utilisables.

4 - COUPE DES MONOCRISTAUX

Si les essais sur la résistivité s'avèrent corrects, on procède à la découpe des monocristaux en fines lamelles.

Pour cette opération, on utilise une scie circulaire à diamant : l'épaisseur du disque doit être faible.

Le monocristal à dopage uniforme (type P ou type N) est découpé selon des plans parallèles et perpendiculaires à l'axe de croissance, comme on peut le voir sur la figure 11-a. Le monocristal à zones alternées est découpé selon des plans parallèles longitudinaux et transversaux (figure 11-b).

La détermination des plans de coupe dans le premier cas est justifié par le fait qu'à chaque instant pendant la croissance du monocristal on a une répartition uniforme des impuretés sur toute la section et que la résistivité d'une lamelle très fine peut être considérée comme rigoureusement constante ; au contraire, dans le second cas on doit faire une coupe de façon à obtenir des barreaux alternativement du type P et N, puis ensuite recoupés : la découpe est donc parallèle à l'axe de croissance.

Chaque lamelle subit ensuite un traitement de surface.

À partir des lamelles transversales on obtient, par une coupe ultérieure des plaquettes de semi-conducteurs N ou P ; à partir des lamelles longitudinales, on obtient des plaquettes alternativement P et N.

Dans la prochaine leçon, nous continuerons cette étude technologique et examinerons ensemble, les principales techniques de fabrication des diodes et des transistors.


RÉPONSES AUX EXERCICES DE RÉVISION SUR LA 12ème LEÇON THÉORIQUE

1 – La résistance statique est celle que le transistor présente en courant continu de polarisation ; la résistance dynamique est celle que le transistor présente en courant alternatif.

2 – Il y a quatre paramètres hybrides pour chaque type de montage.

3 – Les paramètres hybrides représentent respectivement la résistance d'entrée, la conductance de sortie, le coefficient d'amplification en courant et le coefficient de réaction en tension.

4 – Les unités de mesure des paramètres hybrides sont les suivantes : Ω ou kΩ pour h11,mA/V pour h22 ; sans dimension pour h21 et h12.

5 – Lorsque l'on donne les valeurs des paramètres hybrides, il faut toujours bien spécifier le type de montage, le point de fonctionnement et la température du transistor.

6 – Les valeurs des paramètres hybrides peuvent être mesurées directement sur le transistor à l'aide d'un montage adéquat, ou bien, peuvent être calculées sur les courbes caractéristiques.

7 – Lorsque la température du transistor s'élève au-dessus de la température ambiante, les valeurs des différents paramètres augmentent relativement peu pour h11 et h21, très vite pour h22 et h12

8 – Les paramètres "r" ne peuvent être mesurés directement mais peuvent être calculés à partir des paramètres hybrides.

9 – L'avantage principal des paramètres "r" par rapport aux hybrides est de n'avoir qu'une série de valeurs pour les différents montages possibles (en particulier émetteur commun et base à la masse).


EXERCICES DE RÉVISION SUR LA 13ème LEÇON THÉORIQUE

1 – Pourquoi préfère-t-on extraire le germanium à partir des sous-produits du carbone ou des scories des minerais de zinc, plutôt qu'à partir des minerais de germanium ?

2 – Pourquoi la production du silicium en vue des besoins de l'électronique est-elle plus onéreuse que celle du germanium ?

3 – Pourquoi faut-il obtenir du germanium (ou du silicium) avec un très fort degré de pureté ?

4 – Qu'appelle-t-on coefficient de répartition (ou constante d'isolement) ?

5 – Pourquoi faut-il utiliser, dans la fabrication du silicium, des fours HF d'un type particulier ?

6 – Qu'appelle-t-on "semi-conducteurs polycristallins" ?

7 – Quel est l'avantage du procédé TCHIOKRALSKI par rapport au procédé utilisant la zone de fusion mobile ?

8 – Pourquoi faut-il contrôler la résistivité du barreau polycristallin et monocristallin ?

9 – Pourquoi faut-il faire la coupe d'un barreau monocristallin à zones alternées P et N en lamelles transversales ?

Fin de la leçon 13


LECON 14

TECHNOLOGIE DES TRANSISTORS

Les méthodes de fabrication des transistors sont nombreuses et différentes, mais en règle générale on peut les classer suivant les quatre procédés fondamentaux, qui permettent d'obtenir des jonctions de redressement : jonctions métalliques – jonctions par alliage – jonctions obtenues par étirage (ou croissance contrôlée) – jonctions par diffusion.

Dans la première partie de cette leçon, nous ferons un résumé des différents procédés en nous limitant aux fabrications des diodes et des transistors.

1 – TECHNIQUE DES JONCTIONS

La jonction électrique des matériaux consiste en un contact plus ou moins large qui intéresse la structure moléculaire même de ces matériaux au point de jonction et peut en modifier la conductibilité.

Si le courant continu peut traverser la surface de la jonction dans les deux sens en rencontrant la même résistance, on dit que l'on a une jonction ohmique ; si la résistance est élevée dans un sens et faible dans le sens opposé, on dit que l'on a une jonction de redressement.

Ces deux types de jonctions existent, simultanément dans les transistors et dans les diodes. Le premier type (ohmique) sert à établir les branchements des fils de sortie ("pattes" du transistor) ; le second type (redressement) constitue l'élément actif qui est la base même du fonctionnement électronique des semi-conducteurs.

Par simplification et pour éviter toute erreur possible, nous appellerons connexion (ou liaison) la jonction "ohmique" et jonction la "jonction de redressement".

Vous trouverez dans les figures 1 et 2, présentés de façon schématique, les quatre procédés permettant d'obtenir des jonctions.

1 – 1 JONCTION METALLIQUE (figure 1-a)

Nous avons vu précédemment, comment étaient préparés les semi-conducteurs pour les utilisations en électronique et comment on obtenait des monocristaux présentant des conductibilités P ou N.

Pour utiliser ces plaquettes, il faut former une jonction de redressement P-N sans en modifier le réseau cristallin. C'est la méthode qui avait été adoptée pour fabriquer les premières diodes et les premiers transistors et qui encore maintenant est utilisée dans la construction de différents types de diodes et de quelques types de transistors.

On place sur la plaquette un morceau de nickel ou tout autre conducteur qui a pour rôle d'assurer un contact ohmique de faible résistance, et sur la face opposée de cette même plaquette on appuie la pointe d'un fil de tungstène, d'or ou d'un alliage métallique.

S'il s'agit d'une plaquette de silicium P, un simple contact de la pointe suffit pour obtenir une jonction de redressement.

Si au contraire on utilise une plaquette de germanium N, comme il est indiqué sur la figure 1-a, pour obtenir une jonction il faut encore envoyer une impulsion de courant I de la pointe vers la plaquette.

L'échauffement dû au passage du courant détermine une redistribution des impuretés dans la zone du monocristal qui entoure le point de contact et favorise ainsi la diffusion de nouveaux éléments d'impuretés en provenance du fil de façon à former une zone P superposée à la zone N d'origine.

Le mélange intime de deux zones dans le même cristal constitue une jonction de redressement. On peut obtenir encore un résultat analogue au précédent, en soudant sur la plaquette N, un fil très fin d'or contenant un très faible pourcentage de gallium.

La jonction obtenue par contact soudé a des caractéristiques meilleures que celles obtenues par simple contact de pointe, parce que la connexion est plus résistante tant du point de vue mécanique que thermique.

Le branchement des connexions externes est fait en soudant (au moyen de l'étain ou autre matériau) les "pattes" de sortie sur la plaque de nickel et sur le fil de tungstène ou d'or. La jonction redresseuse obtenue par les méthodes qui viennent d'être décrites est dite métallique, car à l'origine, une des deux électrodes, c'est-à-dire le fil, est constitué par un métal ou un alliage métallique (tungstène, or, cuivre phosphoreux, cuivre et béryllium, etc …) et l'effet redresseur provient essentiellement des modifications dûes au contact entre le métal et le semi-conducteur dopé de la plaquette.

1 – 2 JONCTION PAR ALLIAGE (figure 1-b)

C'est le type de jonction qui est le plus utilisé actuellement dans la fabrication industrielle des transistors.

On place sur la plaquette une minuscule sphère ou un petit disque d'un matériau qui contient une forte proportion d'impuretés : par exemple de l'indium, ou d l'indium-gallium, si la plaquette présente une conductibilité N comme indiqué sur la figure 1-b.

La plaquette, le disque et un fil de cuivre qui sert de connexion sont placés dans un four spécial et sont portés à une température qui dans le cas de l'indium et du germanium N est de l'ordre de 550 – 600°C.

Le temps de chauffage à cette température n'est pas très critique mais doit dépasser deux ou trois minutes.

Remarquons que dans le cas présent, l'indium fond à 160°C environ et le germanium à 950°C environ.

Tant que la température est inférieure à 160°C, le germanium et l'indium restent à l'état solide ; lorsqu'elle dépasse au contraire 160°C, l'indium fond et une partie du germanium au contact avec la masse en fusion se transforme en donnant un alliage.

Dans cet alliage, le pourcentage du germanium augmente avec la température jusqu'à ce que cette dernière atteigne 950°C où alors tout le germanium se trouve à l'état de fusion et on obtient une solution liquide des deux éléments.

Le procédé est représenté par le graphique de la figure de la figure 3.

Si l'on examine la courbe, on remarque qu'à 550°C, le pourcentage du germanium entré dans l'alliage est de 7% environ, tandis qu'à 600°C, il a doublé et est devenu 14%. Ceci indique donc que la température est très critique, puisqu'il suffit d'une variation relativement faible de celle-ci (50° sur 550°C) pour introduire une variation notable dans la concentration germanium-indium. En pratique, pour que le procédé par alliage donne de bons résultats, il faut maintenir les variations maximales de la température entre ± 5°C de la valeur fixée.

Lorsque l'alliage s'est formé, on laisse refroidir très lentement le four. Pendant cette seconde phase, l'alliage se solidifie en faisant croître sur la structure de la plaquette, une couche P intimement liée avec la couche N d'origine, et il se forme ainsi une jonction redresseuse P-N.

La région supérieure où est fixé le fil constitue une jonction ohmique qui sert à relier la zone P à la connexion externe.

À la fin du processus, on creuse un sillon autour de la jonction, de façon à supprimer le court-circuit qui se forme en général entre la zone supérieure de l'alliage et la couche N de la plaquette.

1 – 3 JONCTION PAR ETIRAGE (CROISSANCE CONTRÔLÉE) (figure 2-c)

Une autre technique qui a un certain succès est basée sur la possibilité d'obtenir une jonction P-N en modifiant la vitesse d'extraction du monocristal lors du procédé TCHIOKRALSKI.

Nous avons vu dans la dernière leçon comment on pouvait obtenir par ce procédé, des jonctions multiples à couches P et N alternées, en exploitant la dépendance qui existe entre le coefficient de répartition des impuretés et la vitesse d'extraction. Pour mieux comprendre encore ceci, nous allons examiner quelques-unes des données les plus significatives.

Lorsque la vitesse d'extraction du monocristal est très lente, le coefficient de répartition de l'arsenic dans le germanium est de l'ordre de 20/1.000 ; cette valeur passe à 65/1.000 pour une vitesse de l'ordre de 5 cm à l'heure et à 150/1.000 pour une vitesse de 30 cm à l'heure.

En considérant de telles données, il devient évident qu'en faisant varier la vitesse d'extraction on peut obtenir dans le monocristal des zones où les impuretés d'arsenic sont plus ou moins importantes.

Si l'on met au contraire dans le germanium en fusion, de l'aluminium (dont le coefficient de répartition est de 100/1.000 et reste à peu près constant dans la gamme des vitesses considérées pour l'arsenic), on obtient une zone N dans laquelle prévaut l'arsenic et si la vitesse est faible on obtient une zone P où c'est l'aluminium qui prévaut.

Les zones ainsi obtenues sont intimement liées dans la structure du monocristal et constituent une succession de jonctions redresseuses P-N.

Par une coupe mécanique spéciale, on obtient des barreaux dans lesquels la structure finale de la diode ou du transistor est déjà déterminée ; pour compléter le dispositif, il suffit d'établir les connexions correspondantes.

1 – 4 JONCTION PAR DIFFUSION (figure 2-d)

La technique de la diffusion est plus récente et a été introduite pour améliorer la réponse en fréquence des transistors. Elle consiste à faire pénétrer à travers la surface très faible, du monocristal et jusqu'à une certaine profondeur, un type donné d'impuretés qui détermine la formation d'une zone N dans le semi-conducteur P d'origine, ou bien d'une zone P dans un semi-conducteur N d'origine.

A ses débuts, la technique de diffusion s'était développée comme une variante de la méthode par étirage décrite ci-dessus.

Au lieu d'agir sur la vitesse d'extraction du monocristal, on introduisait dans le liquide en cours de solidification, des quantités choisies et dosées d'un matériau, alternativement du type P et N.

Par cette méthode, en augmentant tantôt la dose P, tantôt la dose N, on pouvait obtenir des jonctions P-N pendant la croissance du cristal. La diffusion s'obtenait à travers la surface de séparation entre le liquide et le solide, et comme pour le procédé par étirage, le degré de diffusion dépendait de la constante de répartition des éléments d'impuretés dans le semi-conducteur.

Une autre méthode actuellement plus en vogue, consiste à faire évaporer sous vide, ou dans une atmosphère de gaz inerte, des matériaux d'impuretés et à exposer ainsi à la vapeur la surface de la plaquette (figure 2-d). En portant la température de la plaquette et de la vapeur à une valeur convenable, les atomes d'impuretés pénètrent dans le réseau cristallin même de la plaquette avec une concentration qui décroît en fonction de la profondeur comme le montre le graphique de la figure 4. Au niveau de la surface, la concentration des atomes diffusés est de l'ordre de 1019 atomes/cm3 c'est-à-dire 10 milliards de milliards d'atomes dans 1 cm3 de semi-conducteur ; à une profondeur de 20 µ seulement (1 µ = 1 millième de mm) la concentration n'est plus que de 105/cm3, c'est-à-dire 100.000 atomes dans 1 cm3.

Les impuretés diffusées doivent être du type opposé à celui de la plaquette et étant donné leur forte concentration à la superficie, elles prédominent nettement en formant une couche N si le semi-conducteur d'origine est P, ou bien une couche P si le semi-conducteur était N.

La jonction P-N ainsi obtenue présente des caractéristiques meilleures que celles obtenues par la méthode d'étirage ou d'alliage ; de plus, cette méthode permet d'obtenir des effets particuliers qui déterminent une réduction sensible du temps de transit des charges dans les semi-conducteurs et comme nous le verrons plus tard, est particulièrement adaptée pour la fabrication des transistors pour haute fréquence.

2 – MONTAGE DES DIODES ET DES TRANSISTORS

La diode à semi-conducteur consiste essentiellement dans une jonction P-N obtenue par une des méthodes décrites ci-dessus.

On part d'une plaquette et on forme la diode par le procédé de la jonction métallique, ou par le procédé d'alliage ou par diffusion.

La plaquette est successivement exposée à une attaque chimique puis à un abondant lavage en eau désionisée (électriquement neutre) pour éliminer des court-circuits éventuels entre la surface externe des régions P et N. Dès qu'elle est sèche, la plaquette est prête à recevoir les fils de liaisons extérieures.

La formation d'un transistor est obtenue soit en partant d'une plaquette et en y établissant deux jonctions P-N, soit en partant d'un barreau dans lequel les deux jonctions se trouvent déjà formées par étirage ou bien par étirage et diffusion.

La plaquette et le barreau qui constituent l'élément actif du transistor, sont exposés aussi à une attaque chimique puis à un lavage de façon à éliminer des court-circuits éventuels de surface.

Les modalités de l'exécution du montage peuvent différer notablement selon le type de jonction et selon le procédé imposé par le constructeur. Nous allons examiner séparément les descriptions de quelques diodes et transistors d'emploi général.

2 – 1 DIODES À POINTES

A la figure 5-a, on peut voir comment est réalisée une diode à pointe. Les embases des connexions externes sont placées à l'intérieur de l'enveloppe de verre. Sur l'embase de l'anode est soudé un fil de tungstène plié en "S" de façon à présenter un certain jeu élastique dans la direction longitudinale. La plaquette est soudée à l'aide d'un alliage d'étain sur l'embase de la cathode.

Pendant la phase de montage, l'opérateur contrôle la pression de la pointe et le processus de formation de la jonction métallique.

Après un contrôle des caractéristiques électriques aux différentes conditions de fonctionnement, on procède à la fermeture hermétique de l'enveloppe.

2 – 2 DIODES À JONCTION PAR ALLIAGE

A la figure 5-b, on peut voir les différents éléments séparés pour la réalisation d'une diode par alliage.

Nous avons vu sur la figure 1-b, comment était formée la jonction redresseuse et comment on branchait sur la zone P l'embase correspondante (fil de sortie). La plaquette est soudée sur le fond métallique de façon à obtenir une jonction ohmique à faible résistance.

On fixe ensuite, le fond sur la base de l'enveloppe de façon à obtenir une fermeture hermétique. Puis pour terminer, on ferme l'enveloppe sous vide après avoir soudé le fil extérieur d'anode.

La figure 6 représente la structure interne d'une diode par alliage pour des tensions et des courants moyens.

La technique de fabrication ne diffère pas notablement de celle qui a été décrite ci-dessus. Il suffit de remarquer qu'étant donné que le dispositif doit dissiper une certaine puissance sous des tensions relativement élevées, il faut prévoir un bon isolement de l'anode au travers de la calotte de verre. D'autre part la forme de l'enveloppe et les matériaux utilisés sont tels qu'ils permettent une dissipation thermique optimum.

Les sections des conducteurs sont dimensionnées de façon à pouvoir supporter les fortes intensités de courants prévues.

L'enveloppe est remplie de graisse au silicone qui sert à éviter des altérations superficielles de la jonction et à amortir des vibrations éventuelles du système dûes à des sollicitations mécaniques extérieures.

Si l'on désire améliorer la dissipation thermique de la diode, on fixe à l'aide d'un écrou, une plaquette métallique qui fonctionne comme ailette de refroidissement.

2 – 3 DIODE À JONCTION DIFFUSÉE

Le système de montage de la diode représentée à la figure 7 est analogue aux précédents ; toutefois, si l'on examine le dessin, on peut noter quelques différences de structure.

L'embase de cathode, qui dans les types précédents était connectée sur la base métallique de l'enveloppe, est maintenant isolée et connectée à un tube en KOVAR (alliage de Nickel, Cobalt, Manganèse et Fer soudable au verre) qui assure l'étanchéité à la traversée du verre.

Il faut encore se rappeler que pendant le montage l'opérateur doit pouvoir contrôler les jonctions ohmiques des connexions, tandis que dans les diodes à alliage une connexion était établie pendant le processus même de l'alliage.

Si l'on utilise une plaquette de silicium P avec une couche diffusée N, il est plus facile d'établir un large contact ohmique sur la surface de la couche d'origine P par l'intermédiaire d'un second traitement qui consiste dans une diffusion superficielle de bore. Par un tel procédé on peut souder la couche P à la base de l'enveloppe et obtenir ainsi une faible résistance ohmique de contact.

Le branchement de la connexion de sortie de cathode sur la couche N se fait par un procédé spécial dit de thermocompression.

Le procédé consiste à comprimer l'extrémité d'une lamelle de nickel et à chauffer rapidement et pendant un court instant la zone de contact jusqu'à obtenir la soudure des deux ensembles.

Les diodes de ce type, comme celle de la figure 6, appartiennent à la catégorie des diodes de puissance.

Il existe encore bien d'autres techniques, mais en règle générale elles se ramènent toutes aux opérations fondamentales qui ont été examinées dans cette leçon.

2 – 4 TRANSISTORS À JONCTION PAR ALLIAGE PNP

Dans la production industrielle des transistors, la technique des jonctions métalliques à pointes a été abandonnée ainsi que celles des jonctions obtenues par étirage contrôlé. Actuellement, les transistors d'utilisation courante sont fabriqués par la méthode de la jonction par alliage, quelquefois aussi par le procédé de la diffusion et des jonctions métalliques obtenues par soudage. Ces procédés, assez récents, rencontrent un succès croissant dans la fabrication des transistors pour hautes fréquences.

Pour illustrer le procédé du montage des transistors, je vais vous décrire les deux méthodes que l'on peut considérer comme typiques.

TRANSISTOR PNP (PAR ALLIAGE) POUR DES PUISSANCES INFÉRIEURES À 1 W

Les phases principales de la fabrication et du montage sont illustrées à la figure 8.

La plaquette de germanium N a environ 2,5 mm de côté et quelques dixièmes de millimètre d'épaisseur. On forme sur celle-ci, deux jonctions P-N par alliage : celle de l'émetteur (à gauche) et celle du collecteur (à droite). On observera que la quantité d'indium utilisée pour la jonction de l'émetteur est inférieure à celle utilisée pour la jonction du collecteur.

La zone N, qui sépare les deux zones P obtenues par le procédé de l'alliage, constitue l'électrode de base. Sur cette électrode sera placé le support en nickel par soudage sur la plaquette. Cette opération est effectuée en prenant soin de ne pas provoquer de court-circuit avec la région P de l'émetteur.

Pendant l'opération de l'alliage, on connecte respectivement à l'émetteur et au collecteur deux fils de nickel (ou de cuivre) qui serviront de fils de sortie et qui sont reliés aux supports des électrodes. Cette opération s'effectue par soudage électrique.

L'ensemble est ensuite placé dans une enveloppe de verre remplie de graisse au silicone dont la fonction est la même que pour les diodes de la figure 6.

Si l'on a affaire à des transistors de faible puissance, on peint l'enveloppe en noir pour protéger son contenu de la lumière. S'il s'agit de transistors de puissance, on protège l'enveloppe de verre par un cylindre métallique dont le but est d'abord de protéger le dispositif de la lumière et ensuite d'améliorer la dissipation thermique.

TRANSISTOR PNP (PAR ALLIAGE) POUR DES PUISSANCES ÉGALES OU SUPÉRIEURES À 1 W

La technique de la formation des deux jonctions (émetteur et collecteur) est identique à celle utilisée ci-dessus, mais l'exécution du montage (illustré à la figure 9) est différente car il s'agit d'obtenir un dispositif robuste qui puisse supporter le maximum de puissance et dissiper toute la chaleur crée pendant le fonctionnement.

On utilise dans ce but, des plaquettes relativement grandes (de 5 mm de côté environ et quelques dixièmes de mm d'épaisseur). Les conducteurs ont des diamètres de l'ordre du millimètre et une enveloppe métallique montée sur le fond, lui aussi métallique, de façon à former un bloc compact ayant une bonne dissipation thermique. D'autre part l'électrode du collecteur, qui est la plus sujette à l'échauffement, est reliée directement à la masse métallique du boîtier, qui forme ainsi la connexion externe de collecteur.

Dans l'ensemble, la structure du dispositif est compacte et très résistante tant du point de vue thermique que mécanique.

3 – TRANSISTORS À JONCTION ET CARACTÉRISTIQUES DÉPENDANT DES MODALITÉS DE CONSTRUCTION ET DE MONTAGE

Toute la technique de fabrication des transistors est tributaire de la nécessité d'obtenir des matériaux à très grand degré de pureté et de ne pas contaminer ces matériaux lors des différentes manipulations.

Du degré de pureté des différents matériaux, dépend l'allure de la résistivité et la valeur de la tension inverse maximum que l'on peut appliquer entre les électrodes du dispositif.

Des précautions prises pour éviter les contaminations dûes à l'humidité, à la poussière ainsi qu'à des contacts avec des agents chimiques, dépend en grande partie l'uniformité des caractéristiques électriques et par voie de conséquence le coefficient d'amplification β.

Il suffit de se rappeler qu'une variation quelconque dans les opérations avant la fermeture de l'enveloppe peut faire diminuer la valeur du coefficient β et provoquer un accroissement notable du courant inverse de collecteur.

Les différents contrôles de température dépendent la régularité du monocristal, l'épaisseur de la base des transistors alliés, la profondeur de la diffusion et la concentration des impuretés. De l'ensemble de ces quatre facteurs dépend en définitif, la réponse en fréquence du transistor.

A ses débuts, quand le transistor n'avait pas encore quitté les laboratoires de recherches, on a dû résoudre tous les problèmes de la métallurgie des semi-conducteurs (que nous avons vus dans la précédente leçon) avant d'atteindre une qualité industrielle avec des caractéristiques électriques uniformes et reproductibles. Il a fallu ensuite surmonter les trois des plus importantes limitations du transistor par rapport au tube électronique : la dispersion des caractéristiques, la limite de puissance, la limite de réponse en fréquence.

Le problème de la dispersion des caractéristiques a été résolu par différents constructeurs de façon empirique en prenant de grandes précautions pour garantir la pureté des matériaux, la régularité dans la structure cristalline et la pureté des surfaces.

Le problème de la puissance a été résolu ensuite, comme nous l'avons vu, en augmentant la section des conducteurs et les surfaces des éléments actifs, en perfectionnant l'isolement des électrodes et la dissipation thermique de l'enveloppe.

Il nous reste encore à voir, comment on a cherché à résoudre sur le plan de la production industrielle, le problème de la réponse en fréquence, problème qui n'est pas encore complètement résolu, bien que des progrès très sensibles aient été obtenus.

4 – TRANSISTORS POUR HAUTES FRÉQUENCES

Le transistor, comme nous allons le voir dans les prochaines leçons, atténue l'amplitude des signaux aux fréquences élevées. Ceci provient du fait que pour passer d'une jonction à l'autre, c'est-à-dire pour franchir l'épaisseur de la base, les charges électriques suivent un processus de diffusion qui est beaucoup plus lent que dans un circuit électrique classique.

Pour améliorer la réponse en fréquence d'un transistor, il faut diminuer le temps de transit des charges dans l'électrode de la base.

Le résultat peut être obtenu de deux façons différentes :

Avec la technique des jonctions alliées, il est possible d'obtenir des épaisseurs de la base de l'ordre de quelques microns avec des tolérances de ± 1,5 µ et d'avoir ainsi des fréquences de coupure de 15 MHz environ pour des transistors PNP et 30 MHz pour des transistors NPN. Mais avec ce procédé, on diminue le rendement de la production, à cause des risques de court-circuits entre émetteur et collecteur. D'autre part, avec les écarts plus ou moins grands dans la détermination de l'épaisseur de la base, on a une dispersion importante dans les fréquences de coupure.

Avec la technique de la diffusion il est devenu impossible de mieux régler l'épaisseur de la base, d'accélérer les charges pour obtenir ainsi une réduction importante dans le temps de transit et une amélioration dans la réponse aux hautes fréquences.

Nous avons vu (figure 4) qu'en exposant une plaquette à des vapeurs d'impuretés, on obtenait une pénétration de celles-ci en concentration décroissante ; cette répartition particulière des éléments diffusés est appelée "GRADIENT d'impuretés".

Pour fixer les idées, supposons que l'on utilise comme électrode de base une plaquette N à gradient d'impuretés (figure 10).

Les atomes d'impuretés (boules blanches) constituent autant de charges positives fixes dont la concentration varie tout le long de l'épaisseur de la base, tandis que les électrons (boules noires) sont des charges négatives mobiles.

Etant donné que les charges électriques mobiles ont tendance à se répartir uniformément dans les conducteurs et que les électrons sont libres de se mouvoir, on aura une distribution presque uniforme des électrons dans la base.

A cause de la diffusion des électrons, il se crée du côté de l'émetteur (c'est-à-dire là où la concentration des impuretés est la plus grande) un excès de charges positives, tandis que du côté du collecteur (là où la concentration est la plus faible) on a un excès d'électrons. Le phénomène décrit à la figure 10 est représenté schématiquement sur la figure 11.

La distribution différente des charges détermine et maintient un champ électrique, c'est-à-dire une différence de potentiel entre les surfaces de la base. Le champ est polarisé de sorte que le positif est du côté de l'émetteur et le négatif du côté du collecteur. Ainsi les électrons qui proviennent de la borne négative de la pile et qui pénètrent dans la base au travers de la jonction de collecteur sont attirés par le champ positif et se trouvent accélérés, d'où réduction sensible du temps de transit.

Le phénomène qui vient d'être décrit est appelé communément DRIFT, terme anglais qui signifie : "pousser" ; en effet les électrons reçoivent une "poussée" du champ électrique vers la jonction opposée, c'est-à-dire vers l'émetteur dans les transistors PNP.

4 – 1 TRANSISTORS DRIFT

L'effet drift se manifeste d'une manière plus ou moins efficace dans tous les transistors, sauf dans ceux dont les jonctions sont formées par alliage ou dans les jonctions métalliques. Ceci est évident si l'on compare les profils de la variation de la résistivité dans la base (figure 12)

Les transistors obtenus par étirage ou par diffusion présentent une chute de résistivité du côté de l'émetteur (chute plus ou moins rapide) et une augmentation progressive de la résistivité de la base vers le collecteur. Cette allure de la résistivité, indique la présence d'un gradient dans la distribution des impuretés, c'est-à-dire la présence d'un champ accélérateur. Avec la technique combinée des procédés par alliage et par diffusion, on fabrique actuellement des transistors dans lesquels l'effet drift est exploité au maximum.

Les transistors sont appelés transistors DRIFT et on obtient avec ceux-ci des fréquences de coupure élevées, de l'ordre de quelques dizaines de mégahertz.

4 – 2 TRANSISTORS MESA

La limitation fondamentale du transistor drift est dûe à l'imprécision du contrôle de l'épaisseur de la base, imprécision déjà remarquée dans le transistor allié.

Une amélioration sensible du problème est représentée par le transistor MESA. La figure 13 donne l'illustration du montage type de ce transistor et le schéma des deux jonctions.

Le collecteur est constitué par une plaquette de germanium P sur laquelle on vient diffuser la zone de la base. L'épaisseur de la région diffusée peut être contrôlée avec une précision de l'ordre de 0,1 µ. La jonction de l'émetteur est formée sur la surface externe de la base par un procédé d'alliage particulier, appelé "micro-alliage".

Sur la surface même où se formera l'émetteur, est placé le support de la connexion de la base, de telle façon que son profil ressemble à certaines montagnes d'Amérique du Sud appelée mesa. C'est de cette similitude que dérive le nom de Mesa donné à ces transistors.

Avec cette nouvelle réduction de l'épaisseur de la base, et grâce à l'effet drift qui existe toujours, on a pu diminuer encore le temps de transit des charges dans la base et repousser la fréquence de coupure de quelques centaines de mégahertz et couvrir ainsi la gamme des fréquences FM et TV.

5 – RÉSUMÉ SUR LES DONNÉES TECHNIQUES DE FABRICATION DES TRANSISTORS

Dans les tableaux des figures 14 et 15, je vous indique les données technologiques des principales structures de transistors obtenus grâce aux techniques fondamentales ou aux techniques mixtes.

Le procédé dit "melt-back", ou de recristallisation, représente une variante du procédé par étirage et diffusion.

Un barreau de monocristal N, dopé par deux éléments d'impuretés un N et un P, chauffé à une extrémité de façon à obtenir la fusion locale du monocristal est ensuite refroidi lentement.

Pendant la recroissance du monocristal il se forme dans la zone centrale une courbe de conductibilité opposée à celle de la zone extrême, et on obtient ainsi une structure de transistor NPN.

Les transistors à micro-alliage et à barrière de surface ont un profil schématique relativement simple, en ce sens que dans l'un comme dans l'autre, l'épaisseur de la base est déterminée par une profonde incision de la plaquette. Le transistor à micro-alliage est une simple variante de celui à alliage, tandis que le transistor à barrière de surface constitue un exemple de la structure que l'on peut obtenir avec une jonction métallique redresseuse par simple soudage des supports d'émetteur et de collecteur sur la plaquette de base.

Dans la dernière leçon théorique, nous passerons en revue les recherches actuelles et l'orientation de la production vers de nouveaux dispositifs à semi-conducteurs. A partir de la prochaine leçon, nous commencerons la troisième partie du cours entièrement consacrée à l'étude des circuits.


RÉPONSES AUX EXERCICES DE RÉVISION SUR LA 13ème LEÇON THÉORIQUE

1 – L'extraction du germanium à partir des sous-produits du carbone fossile et du zinc est moins coûteuse ; c'est pour cette raison qu'on la préfère à l'exploitation des minerais de germanium.

2 – Le travail du silicium en vue de son utilisation dans le domaine de l'électronique nécessite des traitements longs et de grandes précautions pour éviter qu'il ne se combine à des éléments étrangers ; ceci détermine le coût élevé de sa production.

3 – De la pureté des semi-conducteurs et de la quantité des impuretés dépendent la régularité du dopage, l'allure de la résistivité du monocristal et en dernier ressort les propriétés électriques du dispositif que l'on se propose de réaliser.

4 – Le coefficient de répartition (ou constante d'isolement) est le rapport entre la concentration des impuretés dans le semi-conducteur recristallisé et la concentration des impuretés dans la zone de fusion mobile.

5 – Dans le travail du silicium, on utilise des fours verticaux, pour pouvoir adopter le procédé de la zone de fusion mobile, avec laquelle on évite l'utilisation d'un creuset ; en effet avec l'utilisation d'un creuset comme celui qui est employé dans les fours horizontaux, on ne peut empêcher le silicium en fusion de se combiner avec le matériau dont est composé le creuset.

6 – Un semi-conducteur polycristallin est formé de nombreux petits cristaux différemment orientés ; les barreaux obtenus à la fin du raffinage sont polycristallins.

7 – Le procédé TCHOKRALSKI permet d'obtenir des zones alternativement P et N.

8 – Le contrôle de la résistivité permet de délimiter le tronçon du barreau que l'on utilisera dans les travaux ultérieurs.

9 – La coupe transversale du monocristal permet d'obtenir des plaquettes où la répartition des impuretés est uniforme et la résistivité reste ainsi constante.


EXERCICES DE RÉVISION SUR LA 14ème LEÇON THÉORIQUE

1 – Quelles sont les techniques fondamentales utilisées pour obtenir des jonctions redresseuses ?

2 – Quel est le processus de formation d'une jonction alliée (ou à alliage) ?

3 – Comment sont branchés les supports des diodes au silicium à jonction par diffusion ?

4 – Pourquoi certains types de transistors de puissance (supérieure à 1 W) ont-ils l'électrode du collecteur reliée à la masse métallique de l'enveloppe ?

5 – Est-ce que le coefficient d'amplification β dépend de l'exécution du montage d'un transistor ?

6 – Comment peut-on diminuer le temps de transit des charges dans l'électrode de base ?

7 – Comment se forme le champ accélérateur dans l'électrode de base ?

8 – Quelle est la signification du nom transistor Mesa ?

9 – A partir du profil de la résistivité de la base peut-on reconnaître s'il y a formation dans le transistor d'un champ accélérateur ?

Fin de la leçon 14


LECON 15

1 – CIRCUITS A TRANSISTORS

Avec la présente leçon, nous commencerons la troisième partie du cours, dans laquelle nous examinerons les différents circuits à transistors et étudierons les applications des semi-conducteurs dans la radio en particulier et dans l'électronique en général.

Un circuit quelconque à transistors exploite la propriété amplificatrice d'un tel dispositif, que l'on a largement étudiée en son temps : il est donc parfaitement logique de commencer par le circuit amplificateur qui est le circuit le plus simple à transistors.

Nous avons déjà vu qu'un transistor pour fonctionner correctement devait être polarisé dans des conditions déterminées et qu'il devait travailler en un point défini de ses caractéristiques de collecteur. Nous avons aussi traité longuement des circuits de polarisation, et avons pris en considération les inconvénients qui pouvaient se produire dans certains cas avec l'augmentation de la température et les remèdes que l'on pouvait apporter.

Nous nous proposons d'étudier maintenant, comment un transistor monté dans un circuit, peut amplifier un signal quelconque appliqué à son électrode de commande et comment un tel signal amplifié peut être prélevé de cet étage pour être utilisé dans d'autres circuits.

Suivant les exigences particulières et les types de transistors utilisés on peut obtenir un nombre illimité de circuits amplificateurs différents, mais leur fonctionnement de base reste établi toujours sur le même principe.

Il est donc normal de considérer tout d'abord le circuit amplificateur le plus simple et d'en étudier le fonctionnement et les propriétés avant d'examiner d'autres types d'amplificateurs utilisés dans la technique radio.

Pour étudier un circuit amplificateur, il est nécessaire d'appliquer à ses bornes "d'entrée" un signal et voir comment il se comporte dans ces conditions. L'étude est nettement facilitée, tant au point de vue description du fonctionnement, que des formules qui en découlent si l'on considère non pas un signal quelconque, mais un signal sinusoïdal c'est-à-dire une tension ou un courant dont la valeur varie selon une "loi sinusoïdale".

Le choix d'un tel type de signal est dû au simple fait que la loi sinusoïdale, apparemment bizarre, est en réalité une loi "naturelle". Il suffit de penser que le mouvement d'un pendule obéit à la loi sinusoïdale, ainsi qu'un mouvement oscillant simple quelconque, comme par exemple la vibration de la corde d'un instrument musical. Avant d'examiner le circuit amplificateur il est donc nécessaire de rappeler pour mémoire les propriétés d'une tension ou d'un courant sinusoïdal.

Je vous ai représenté à la figure 1-a, l'allure d'une tension sinusoïdale (ceci reste vrai aussi pour un courant sinusoïdal) : comme vous pouvez le voir, la valeur de la tension part de zéro, augmente jusqu'à atteindre une valeur maximum positive (c'est-à-dire au-dessus de l'axe de référence) indiquée par + Vmax ; puis, elle redescend jusqu'à zéro, et continue à augmenter en dessous de l'axe jusqu'à atteindre la valeur maximum négative, indiquée par – Vmax ; et enfin elle croît à nouveau pour atteindre la valeur zéro ; le cycle est ainsi terminé et peut recommencer à nouveau.

Le temps nécessaire pour effectuer un cycle complet est appelé PERIODE et qui est indiqué en général par la lettre majuscule T ; le nombre de cycles qui s'effectuent dans une seconde (c'est-à-dire dans l'unité de temps) exprime la fréquence de la tension sinusoïdale, indiquée normalement par la lettre f.

La période T et la fréquence f sont liées par la formule simple :

T = 1/f ou f = 1/T

où la période et la fréquence sont exprimées respectivement en secondes (s) et en hertz (Hz) ou bien en millisecondes (ms) et en kilohertz (kHz), ou encore en microsecondes (µS) et en mégahertz (MHz).

Si comme indiqué sur la figure 1, la période est de 20ms = 0,020s, la fréquence sera égale à 1⁄0,02 = 50Hz. Dire en effet que la fréquence est de 50Hz signifie qu'en 1 seconde, on a 50 oscillations complètes, et que la durée d'une seule oscillation est de 1/50 de seconde, soit précisément 20ms.

Pour définir une grandeur sinusoïdale, c'est-à-dire une tension ou un courant sinusoïdal, il ne suffit pas de donner sa fréquence ou sa période, mais il faut encore indiquer la valeur de l'amplitude de l'oscillation et ceci peut être fait de différentes façons.

En effet, comme on peut le voir d'après la figure 1-b, l'allure sinusoïdale est parfaitement définie du point de vue mathématiques, de sorte que, après avoir fixé la longueur de la période et après l'avoir partagée en douze parties égales, on peut dessiner la courbe (appelée sinusoïde), parce que l'on sait qu'elle coupe l'axe zéro au point 0 (début de la période), au point 6 (moitié de la période) et au point 12 (fin de la période) ; on sait d'autre part, qu'elle atteint la valeur positive maximum au point 3 (quart de période) et la valeur négative maximum au point 9 (trois quarts de période), ces deux maxima ayant toujours même amplitude.

Aux points 1, 5, 7 et 11, la valeur atteinte est exactement la moitié de la valeur maximum (50%) ; aux points2, 4, 8 et 10, elle est égale à 86,6% (c'est-à-dire √3⁄2) de la grandeur maximum ; enfin aux points 1', 4', 7' et 10' la valeur atteinte est égale à 70,7% (c'est-à-dire √2⁄2) de la valeur maximum

Mathématiquement parlant, la période T est divisée en "360 degrés électriques" et chacune des 12 parties est donc égale à 30° : la correspondance entre les points considérés et les degrés électriques correspondants est évidente d'après la figure même.

Il suffira donc d'indiquer une de ces valeurs pour pouvoir dessiner complètement la sinusoïde. Les plus importantes de ces valeurs pour leur application immédiate dans les calculs, sont la valeur maximum et la valeur efficace. La première est très importante pour pouvoir travailler sur les caractéristiques du transistor comme nous le verrons sous peu. La seconde au contraire est importante pour le calcul de la puissance d'un courant alternatif et elle est la valeur que par convention on utilise pour exprimer "l'amplitude" d'une grandeur sinusoïdale. Une autre valeur très importante est celle que l'on appelle "de crête à crête".

Ces valeurs seront indiquées désormais par Vp (valeur maximum, ou valeur de crête ou valeur de "pic"), Veff (valeur efficace) et Vpp (valeur de crête à crête ; en anglais "peak to peak") (figure 1-b).

Ces valeurs sont liées entr'elles par les relations simples suivantes :

vp = 1,41 x veff vp = 0,5 vpp
veff = 0,707 x vp veff = 0,353 x vpp
vpp = 2 x vp vpp = 2,82 x veff

Après avoir rappelé ces notions sur les grandeurs sinusoïdales, nous pouvons passer directement à l'étude des étages amplificateurs.

1 – 1 AMPLIFICATEURS A TRANSISTORS

Comme nous l'avons dit précédemment, le circuit le plus utilisé en pratique est celui de l'émetteur commun, c'est pour cette raison que ce circuit sera examiné en premier lieu. Bien que le montage en émetteur commun nécessite toujours la stabilisation thermique, pour simplifier le problème nous examinerons d'abord un circuit non stabilisé. Le circuit stabilisé sera étudié en second lieu.

Le schéma le plus simple d'un amplificateur à émetteur commun est représenté à la figure 2. Le transistor est alimenté par la pile de 9 V à travers la résistance de charge RC de 1,5kΩ et la résistance de polarisation RB de 150kΩ. Afin de stabiliser le point de fonctionnement, il faut remarquer que les condensateurs C1 et C2, branchés respectivement à la base et au collecteur ne laissent pas passer le courant continu (les deux armatures des condensateurs sont en effet isolées entr'elles), ce qui signifie que le reste du circuit n'intervient pas.

Si l'interrupteur S est ouvert, aucune tension alternative n'est appliquée au secondaire du transformateur T, c'est-à-dire à la base du transistor ; dans ces conditions, le point de fonctionnement est déterminé comme nous l'avons vu dans les précédentes leçons.

En considérant les caractéristiques de collecteur (quadrant I de la figure 3) et en traçant la droite de charge, le point de fonctionnement est en A' avec un courant de polarisation de la base de (9 V)⁄(150kΩ) = 0,060mA = 60µA. Le point de fonctionnement appelé encore point de repos, parce qu'il représente le fonctionnement du transistor lorsque l'on n'applique aucun signal à sa base peut encore être reporté dans le quadrant II sur la caractéristique dynamique mutuelle déterminée à partir de la droite de charge du premier quadrant, comme nous l'avons vu en son temps, et dans le quadrant III sur la caractéristique dynamique d'entrée, qui en pratique coïncide avec la courbe donnée dans les catalogues (la seule en général d'ailleurs) et qui correspond souvent à la tension de collecteur de 4,5 V (voir leçons précédentes). On obtient ainsi les points A (quadrant II) et A'' (quadrant III) de la figure 3.

Les courants et les tensions relatifs au point de repos du transistor se déterminent facilement sur la même figure 3 ; on a ainsi :

VCEo = 4 V ; ICo = 3,33mA ; IBo = 60µA ; VBEo = 170mV.

Remarquez que l'indice de chaque grandeur est suivi par zéro (o) pour bien indiquer qu'il s'agit de valeurs relatives au point de repos.

Il faut remarquer encore que, tant que S reste ouvert, dans le circuit ne circulent que des courants et tensions continus de polarisation et que le voltmètre Vu branché à la sortie du collecteur par l'intermédiaire de C2 n'indique aucune tension, puisque C2 ne laisse pas passer le courant continu.

Fermons maintenant l'interrupteur S et relions le primaire du transformateur T à un générateur de tension alternative, par exemple le réseau de distribution de l'énergie électrique, qui délivre une tension sinusoïdale de 50 Hz.

La tension au secondaire est réglée à la valeur désirée par l'intermédiaire du potentiomètre P et appliquée au transistor à travers la résistance R1 de 100kΩ et le condensateur C1, dont la réactance à la fréquence du signal appliqué est supposée faible et peut être négligée devant les 100kΩ de la résistance R1

De cette manière, on peut considérer que le condensateur C1 est un simple élément de liaison qui laisse passer totalement le signal alternatif et bloque par contre le courant continu de polarisation en l'empêchant d'aller se refermer à la masse par le potentiomètre P.

Réglons maintenant P de façon à ce que la tension appliquée à R1 ait une valeur de crête vp de 2 V (la valeur positive atteinte par le signal est de 2 V, ainsi que la valeur négative maximum).

Cette tension va provoquer un courant dans le circuit constitué par R1, C1, et par la jonction base-émetteur (figure 2) et dont la valeur sera pratiquement déterminée par la seule valeur de R1, car comme nous l'avons dit, on suppose que la réactance de C1 est négligeable devant R1 et que d'autre part, la résistance d'entrée du transistor en courant alternatif a une valeur très faible devant les 100kΩ de R1.

Avec une bonne approximation, on peut dire que la tension vp va faire circuler dans le circuit, un courant de :

iBp = vp⁄R1= (2 V)⁄(100kΩ) = 0,02mA = 20µA.

Pendant l'alternance négative, le courant iBp a le sens indiqué sur la figure 2, c'est-à-dire le même sens que le courant de polarisation IBo. Les deux courants de base vont donc s'ajouter et le courant total de base, aura lors de la crête négative la valeur :

IBmax = IBo + iBp = 60 + 20 = 80µA.

Pendant l'alternance positive, le courant iBp sera dans le sens opposé à celui indiqué sur la figure 2, c'est-à-dire qu'il sera de sens opposé au courant de polarisation. Le courant de base sera donc égal à la différence des deux courants et pendant la crête de l'alternance positive atteindra la valeur :

IBmin = IBo - iBp = 60 - 20 = 40µA.

En conclusion donc, si l'on applique un signal sur la base d'un transistor, le courant total de base va résulter de la superposition d'un courant continu de polarisation IBo et du courant alternatif iB du signal, c'est-à-dire qu'il sera variable dans le temps comme le signal lui-même. Dans le cas de l'exemple le courant total de base va varier continuellement entre 80µA et 40µA en suivant l'allure sinusoïdale puisque l'on a supposé que c'était l'allure du signal appliqué sur la base.

Pour étudier le comportement du transistor dans ces conditions, il faut opérer sur les caractéristiques de la figure 3 en faisant quelques constructions graphiques simples.

Considérons la droite verticale qui passe par le point de fonctionnement A du deuxième quadrant et sur cet axe, prenons un segment de longueur quelconque, par exemple celui qui est limité sur la figure par les points 0 et 12.

Ce segment correspond à une période du signal sinusoïdal appliqué sur la base. Traçons dessus la sinusoïde qui le représente, selon la construction indiquée sur la figure 1-b.

Pour simplifier le dessin nous ne considérerons seulement que les points 0, 6 et 12 qui se trouvent sur l'axe, les points 3 et 9 qui représentent les crêtes et les points 1, 5, 7 et 11, où la sinusoïde atteint une valeur égale à la moitié du maximum. Comme dans le cas de l'exemple, la valeur de iBp est de 20µA, l'amplitude maximum de la sinusoïde sera donc de 20µA.

En reportant les points de la sinusoïde sur l'axe horizontal à l'aide de droites parallèles passant par ces points (lignes en pointillés sur la figure) on pourra lire sur cet axe les valeurs du courant de base correspondant à chacun des points considérés sur la sinusoïde.

On peut ainsi voir, qu'en partant de 60µA (point 0), le courant croît à 70µA (point 1), puis à 80µA (point 3), puis redescend à 70µA (point 5) et redevient 60µA, (point 6) en terminant ainsi la première alternance. Pendant l'autre alternance, le courant de base continue à diminuer jusqu'à 50µA (point 7), puis passe par la valeur minimum de 40µA (point 9) et recommence ensuite à augmenter à 50µA (point 11) pour reprendre la valeur de 60µA (point 12) terminant ainsi le cycle complet.

Nous avons donc vu que pendant les deux alternances (une période) le courant de base part de sa valeur de repos, augmente de 20µA (c'est-à-dire d'une valeur égale à la valeur de la crête de la sinusoïde qui représente le signal d'entrée) atteignant la valeur maximum IBmax de 80µA, puis diminue jusqu'à atteindre la valeur minimum IBmin de 40µA et accomplit ainsi une excursion totale égale à la différence entre la valeur maximum et la valeur minimum, qui dans le cas de l'exemple est égale à IBmax – IBmin = 80 – 40µA

Cette valeur est égale à celle de crête à crête du signal appliqué à la base, c'est-à-dire iBpp = 2 x iBp = 2 x 20 = 40µA

L'excursion du courant de base peut être suivie sur la caractéristique dynamique mutuelle du deuxième quadrant, en observant comment se déplace le point de fonctionnement du transistor pendant le cycle du signal d'entrée. Pour cela, il suffit de prolonger les lignes en pointillés jusqu'à rencontrer la caractéristique même.

On voit ainsi que le point de fonctionnement se déplace de A jusqu'au point C, puis revient en arrière jusqu'au point E et retourne au point de départ A après avoir effectué un cycle complet. L'excursion du point de fonctionnement sur la caractéristique dynamique mutuelle est ainsi représentée par la portion de la courbe comprise entre C et E.

Il est facile maintenant de représenter l'allure du courant de collecteur, puisque la caractéristique dynamique mutuelle a précisément le rôle de passer des valeurs du courant de base à celles du courant de collecteur correspondant.

La construction se fait de la façon suivante. A partir du point A, on trace une droite horizontale qui passant justement en A, représente l'axe du signal de sortie, c'est-à-dire du courant de collecteur. Sur cette droite, on prend un segment de longueur égale à celle prise précédemment sur l'axe vertical passant par le point A et représentant la période T. Ce segment sera encore partagé en 12 parties égales numérotées par les points correspondants de 0 à 12 en mettant pour simplifier les points 2, 4, 8 et 10.

Si nous traçons maintenant les lignes horizontales parallèles qui passent par les différents points de fonctionnement considérés sur la caractéristique dynamique, nous déterminerons les points correspondants qui donnent l'allure du courant de collecteur. En effet, quand le point de fonctionnement se trouve en A, nous avons le point 0 ; quand le point vient en B et en C nous venons en 1 et 3 ; c'est en 3 que le courant de collecteur atteint sa valeur la plus élevée. Ensuite le point de fonctionnement redescend en B, en A, puis en D, et arrive enfin au point E : le courant de collecteur diminue en 5, 6, 7 et atteint sa valeur minimum en 9. Puis le point de fonctionnement remonte de D et revient en A, tandis que le courant de collecteur passe aux points 11 et 12.

Comme il apparait sur la figure 3, l'allure du courant de collecteur est encore sinusoïde, comme l'est le courant de base. Pendant le cycle, le courant de collecteur passe de sa valeur de repos ICo = 3,33mA à la valeur maximum ICmax = 4,26mA (point 3), puis redescend à la valeur à la valeur minimum ICmin = 2,40mA (point 9).

Si l'on se rappelle qu'avec la construction ainsi effectuée, on obtient une correspondance parfaite entre le numérotage des points de la sinusoïde représentant le courant de base avec ceux de la sinusoïde représentant le courant de collecteur, on en déduit que lorsque le courant de base augmente, le courant de collecteur augmente aussi et inversement lorsque le premier diminue, le second suit le mouvement ; ceci exprime que le courant de sortie (collecteur) est en phase avec le courant d'entrée (base).

Comme on l'a vu, le courant de base est variable, car il est constitué par le courant de repos IBo auquel se superpose le courant alternatif (sinusoïdal) iB du signal d'entrée. De la même façon, le courant variable du collecteur peut être considéré comme résultant du courant continu de repos ICo, auquel se superpose le courant alternatif iC provoqué par le signal appliqué.

Le courant continu ICo prend le nom de Composante Continue du courant de collecteur, tandis que le courant alternatif iC qui se superpose, prend le nom de Composante Alternative. C'est cette dernière composante qui représente le signal de sortie de l'amplificateur.

L'amplitude du courant du signal de sortie peut facilement être déterminée, à partir du moment où la valeur de crête à crête de la sinusoïde est donnée exactement par l'excursion du courant collecteur et où la valeur de crête est égale à la moitié de la valeur précédente.

Ainsi, dans le cas de l'exemple, on a :

iCpp = ICmax – ICmin = 4,26 -2,40 = 1,86mA

et que :

iCp =iCpp⁄2 = 1,86 : 2 = 0,93mA

Le même raisonnement peut être repris en ce qui concerne la tension de collecteur, dont l'allure peut se déduire de celle du courant de collecteur par une construction analogue. Il suffit en effet de reporter les points de fonctionnement A, B, C, D, E, du quadrant II sur la droite de charge du quadrant I, déterminant ainsi les points A', B', C', D', E', et de considérer comme axe de référence, la verticale qui passe par le point de repos qui est maintenant A'.

L'allure de la tension de collecteur est encore sinusoïdale comme on peut le voir sur la figure 3, et les valeurs de la tension doivent être lues sur la même horizontale que celle qui correspond aux tensions du collecteur. On voit ainsi que la tension de collecteur, dont la valeur de repos VCEo est de 4 V, atteint la valeur maximum VCEmax de 5,4 V (point 9) et la valeur minimum VCEmin de 2,6 V ; elle accomplit une excursion égale à VCEmax– VCEmin = 5,4 – 2,6 = 2,8 V.

On peut considérer ainsi que la tension de collecteur est la résultante d'une composante continue, constituée par la tension continue de repos VCEo, et d'une composante alternative vC qui représente le véritable signal de sortie (ou de tension). La valeur de crête à crête de vC est donnée par l'excursion de la tension de collecteur et est égale dans notre exemple à 2,8 V, tandis que la valeur de crête est égale à la moitié de cette valeur soit 1,4 V.

Il faut remarquer encore que quand le courant de base (signal d'entrée) atteint sa valeur maximum (point 3), la tension de collecteur atteint sa valeur minimum et inversement, lorsqu'il atteint sa valeur minimum (point 9), la tension atteint sa valeur maximum. Pour cette raison, on dit que le courant d'entrée et la tension de sortie sont en opposition de phase, ou ce qui revient au même, sont déphasés de 180°.

La tension de sortie de l'amplificateur est mesurée par le voltmètre pour le courant alternatif indiqué par Vu sur la figure 2.

Il est relié au collecteur par l'intermédiaire du condensateur C2 qui permet d'appliquer au voltmètre la seule composante alternative de la tension du collecteur.

Si le voltmètre est gradué en valeur efficace, comme il l'est en général, la valeur indiquée sera celle de crête divisée par 1,41 ; on lira ainsi sur le voltmètre, la valeur :

vCeff = vCp⁄1,41 = 1,41 : 1,41 = 1 V environ

Il nous reste encore à déterminer l'allure de la tension qui s'établit entre la base et l'émetteur. Pour cela, il faut reprendre la caractéristique dynamique d'entrée du quadrant III et y porter les points de fonctionnement A'', B'', C'', D'', E'', pour déterminer l'allure de la tension VBE dont les valeurs peuvent être lues sur l'axe vertical gradué en mV.

On voit ainsi que l'allure de la tension de base est encore sinusoïdale ; la tension de base passe pendant le cycle, de la valeur de repos VBEo de 170mV à la valeur maximum VBEmax de 185mV et à la valeur minimum VBEmin de 155mV et accomplit une excursion de 185 – 155 = 30mV.

La tension de base (tension d'entrée) peut aussi être considérée comme étant composée d'une tension continue, égale à la tension de repos VBEo de 170mV, et d'une composante alternative vB, dont la valeur de crête à crête vBpp est donnée par l'excursion de la tension de base et qui est égale à 30mV, tandis que sa valeur de crête vBpp est égale à vBpp : 2 , soit 30 : 2= 15mV

Si l'on examine la figure 3, on peut voir que lorsque le courant de base atteint sa valeur maximum (point 3) la tension de base atteint aussi sa valeur maximum. On en déduit alors que le courant et la tension d'entrée sont en phase. Sur la même figure, on voit que la tension d'entrée et celle de sortie sont en opposition de phase : le courant et la tension de sortie sont donc aussi en opposition de phase.

1 – 2 GAIN EN COURANT, EN TENSION ET EN PUISSANCE –

Pour un étage amplificateur on peut définir trois gains différents selon que l'on considère les courants, les tensions ou les puissances à l'entrée et à la sortie.

Après avoir fixé l'allure du courant de commande du transistor et déterminé les allures du courant et de la tension de sortie (et même à la rigueur celle de la tension d'entrée), les gains peuvent facilement être calculés si l'on se rappelle comment ils sont définis.

Par gain, on entend le rapport entre l'amplitude du signal de sortie à celle du signal d'entrée), ainsi le gain en courant sera donné par le rapport entre la composante alternative du courant de collecteur et la composante alternative du courant de base.

On peut prendre pour ces courants, indifféremment les valeurs de crête à crête, ou les valeurs de crête, ou les valeurs efficaces pourvu que l'on prenne pour les deux la même valeur. D'après les constructions graphiques de la figure 3, il est très facile de mesurer les excursions totales des courants, et on peut dire que le gain de courant (que nous désignerons par GI) est donné par la formule :

GI = (ICmax - 〖 I〗_Cmin)/(IBmax - IBmin)

où les courants doivent être exprimés dans les mêmes unités. Si l'on choisit le microampère par commodité, on aura :

GI = (4.260-2.400)/(80-40) = 1.860/40 = 46,5

De façon analogue on définit le gain en tension, en prenant cette fois la tension de base et la tension de collecteur. Le gain sera indiqué par GV et sa valeur donnée par la formule :

GV = (VCEmax - 〖 V〗_CEmin)/VBEmax - VBEmin)

où les tensions doivent être exprimés dans les mêmes unités. Si l'on choisit le millivolt, on obtient dans l'exemple de la figure 3 :

GV = (5.400-2.600)/(185-155) = 2.800/30 = 93,33

Le gain de puissance enfin, est donné par le rapport entre la puissance de sortie Pu (puissance d'utilisation) et la puissance d'entrée Pe. Comme les tensions et les courants sont considérés comme sinusoïdaux, la puissance sera donnée par le produit de leurs valeurs efficaces.

Si l'on calcule, à partir des valeurs de courant et de tension maximum et minimum, lues sur la figure 3, on aura :

Pu = vCeff x iCeff =((VCEmax - VCEmin ) x (ICmax -ICmin))/8

et par analogie :

Pe = vBeff x iBeff = =(VBEmax - VBEmin ) x (IBmax -IBmin))/8

La puissance sera donnée en milliwatt (mW) si la tension est exprimée en volt (V) et le courant en milliampère (mA), ou bien en microwatt (µW), si la tension est exprimée en millivolt (mV) et le courant en milliampère (mA).

Dans le cas de notre exemple, si l'on exprime la tension de collecteur en volt et le courant en milliampère :

Pu = ((5,4-2,6) x (4,26-2,40))/8 = (2,8 x 1,86)/8 = 0,651mW

et en exprimant la tension de base en millivolt et le courant de base en milliampère on a

Pe = ((185-155) x (0,08-0,04))/8 = (30 x 0,04)/8 = 0,15µW

Comme 0,651 mW = 651 µW, on peut calculer le gain de puissance GP qui est alors :

GP = Pu/P_e  = 651/0,15 = 4.340

On peut aussi vérifier rapidement que le gain de puissance n'est autre que le produit des gains en courant et en tension. En effet :

GP = GI x GV = 46,5 x 93,33 = 4.340 environ

En ce qui concerne les valeurs des gains, on peut donner les précisions suivantes. Le gain en courant est d'autant plus proche du coefficient d'amplification β du transistor (mesuré au point de repos) que plus faible est la valeur de la résistance de charge. Pour RC = 0 c'est-à-dire lorsque le collecteur est directement relié à la pile, on a exactement GI = β

Dans ces conditions, on obtient la valeur maximum pour le gain en courant, mais le gain en tension est réduit à zéro. En effet, si le collecteur est relié directement à la pile, la tension du collecteur est constamment égale à la tension VCC délivrée par la pile et ne subit donc aucune variation lorsque l'on applique un signal à l'entrée.

Ceci signifie donc que la composante alternative de la tension de collecteur est nulle, et que l'on n'a pas de tension à la sortie ; en d'autres termes, le gain en tension est nul : GV = 0.

De même, le gain en puissance est alors nul, puisqu'il n'y a pas de puissance à la sortie, car vC = 0.

Pour que le gain en tension ne soit pas nul, il faut que la résistance de charge soit différente de zéro. Plus celle-ci est élevée, plus grand sera GV, mais par contre plus faible sera la valeur de GI comme on l'a dit plus haut. En augmentant la valeur de RC, on augmente le gain en tension, tandis que le gain en courant va en diminuant.

On peut déterminer que le gain en puissance atteint une valeur maximum pour une valeur bien déterminée de RC, qui est appelée "charge optimum". La charge optimum d'un transistor dépend avant tout du type de transistor et aussi du point de repos choisi. Pour obtenir ainsi le gain maximum de puissance, c'est-à-dire la puissance maximum à la sortie, il faut déterminer avec grand soin la valeur de RC, ce qui peut se faire en refaisant la construction graphique de la figure 3 pour différentes valeurs de la résistance de charge, jusqu'à ce que l'on ait trouvé la valeur qui convient le mieux.

On trouve alors que le gain maximum est obtenu pour une valeur de RC à peu près égale à la valeur de la résistance de sortie en courant alternatif du transistor (définie dans la douzième leçon de théorie) et calculée pour le point de repos choisi.

Lorsque l'on ne s'intéresse uniquement qu'au gain en courant ou en tension, on choisit la valeur de RC ou faible ou grande.

1 – 3 RÉSISTANCE D'ENTRÉE ET DE SORTIE

Ayant défini dans la douzième leçon de théorie une résistance d'entrée et une résistance de sortie en courant alternatif, pour le transistor seul, on peut définir maintenant deux résistances analogues pour l'étage amplificateur complet.

En partant du principe général de la résistance, défini par la loi d'Ohm comme étant le rapport entre la tension appliquée aux bornes de la résistance considérée et le courant qui la traverse, on définit la résistance d'entrée de l'étage amplificateur comme étant le rapport entre la tension alternative que l'on applique à son entrée et le courant qui traverse ce même circuit d'entrée.

Je vous ai redessiné à la figure 4, le schéma de la figure 2, où pour une commodité de raisonnement, j'ai polarisé la base à l'aide d'une pile séparée, ce qui ne modifie en aucune façon le fonctionnement de l'étage.

Appliquons maintenant aux bornes d'entrée, c'est-à-dire aux points indiqués EE de la figure 4, la tension alternative considérée auparavant et dont la valeur de crête est vBp = 15mV. De cette manière, le courant de crête de base iBp sera encore de 20µA puisque les conditions de fonctionnement sont les mêmes que sur la figure 2.

La tension alternative vBp, comme on le voit sur la figure 4, est appliquée aussi à la résistance RB qui, en série avec la pile, se trouve en parallèle sur la base, c'est-à-dire entre la base et la masse, ce qui signifie que la résistance RB et la pile seront parcourues par le courant alternatif iRp. Comme la pile a une résistance très faible, et se comporte pratiquement comme une simple liaison pour le courant alternatif, la valeur du courant sera donnée simplement par :

iRp = vBp⁄RB = (15mV)⁄(150kΩ) = 0,1µA

Dans le cas de l'exemple, le courant iRp est très faible et peut être complètement négligé devant le courant qui traverse la base, comme on l'a fait sur la figure 2. Nous ne l'avons considéré seulement, que pour bien préciser qu'en général le courant d'entrée d'un étage, n'était pas simplement iBp mais qu'il y avait en plus iRp.

En conséquence, on en déduit que la résistance d'entrée de l'étage n'est pas simplement la résistance d'entrée du transistor (qui dans le cas de l'exemple est :

rB = vBp⁄iBp  = (15mV)⁄(20µA) = 0,75kΩ), mais qu'il y a aussi la résistance RB en parallèle.

La résistance re d'entrée de l'étage est donnée par la formule :

re = (rB x RB )/(rB +〖 R〗_B ) = (0,75 x 150)/(0,75+150) = 112,5/150,75 = 0,746kΩ = 746Ω

Comme on le voit, la valeur de re diffère très peu de la valeur de rB (746Ω au lieu de 750Ω) dans le cas de l'exemple pour un montage en émetteur commun et non stabilisé du point de vue thermique. Nous verrons dans d'autres circuits où la valeur de RB n'est plus aussi grande par rapport à rB, que la résistance d'entrée de l'étage peut être sensiblement plus faible que celle de la résistance d'entrée du transistor.

A propos de cette dernière, c'est-à-dire rB, vous devez noter qu'elle aurait pu être calculée à partir des excursions de la tension et du courant de base vus sur la figure 3 et en utilisant la formule suivante :

re = VBEmax - VBEmin)/(IBmax - IBmin ) = (185-155)/(80-40) = (30mV)/(40µA) = 0,75kΩ

Dans le cas du montage en émetteur commun, la valeur de rB est pratiquement égale à celle de la résistance d'entrée en courant alternatif, comme elle a été définie dans la douzième leçon théorique.

De façon analogue on peut déterminer la résistance de sortie de l'étage, qui résulte de la mise en parallèle de la résistance de charge RC et de la résistance de sortie rC du collecteur, c'est-à-dire que l'on a :

rS = (rC x RC )/(rC +〖 R〗_C )

En se rappelant que pour le montage en émetteur commun, la résistance de collecteur rC est la même pratiquement que la résistance de sortie en courant alternatif du transistor, définie dans la douzième leçon de théorie, on trouve dans le cas de l'exemple de la figure 3, pour le point de repos A', la valeur rC = 7kΩ environ. La résistance de sortie de l'étage est alors avec RC = 1,5kΩ.

rS = (7 x 1,5)/(7+1,5)= 10,5/8,5 = 1,236kΩ

Le calcul des valeurs des résistances d'entrée et de sortie du transistor et de l'étage dans lequel il est monté, a une très grande importance dans l'étude des amplificateurs à plusieurs étages, comme nous le verrons plus tard.

2 – SIGNAL MAXIMUM À L'ENTRÉE ET À LA SORTIE

Dans l'exemple de la figure 2, on a supposé que l'on faisait circuler dans la base, un courant alternatif de 20µA crête, et qu'il était obtenu en appliquant en amont, une tension de 2V crête à une résistance de 100kΩ.

Supposons maintenant que l'on augmente le courant de commande du transistor, c'est-à-dire la valeur de iBp, en agissant simplement sur le potentiomètre P de la figure 2, c'est-à-dire sur la valeur de vp. Nous voulons voir jusqu'à quelles valeurs de iBp on peut aller, et comment une telle augmentation se répercute sur les autres tensions et courants.

Les limites extrêmes du point de fonctionnement sur la droite de charge (quadrant I) sont représentées par S' (point de saturation) et I' (point d'interdiction) ; il est évident que la valeur maximum de iBp sera celle qui amènera le point de fonctionnement en un de ces deux points.

En reportant sur la figure 5, les différentes caractéristiques déjà considérées à la figure 3, on voit qu'en augmentant iBp, le premier des deux points limites atteint est le point I' (interdiction du courant de collecteur) qui correspond à la valeur zéro atteinte par le courant de base (IBmin = 0)

Comme le courant de repos est de 60µA, la valeur maximum de iBp est donc de 60µA (en effet IBmin = IBo – iBp = 60 – 60 = 0µA).

Par conséquent, la valeur maximum du courant de base est :

IBmax = IBo + iBp = 60 + 60 = 120µA comme on peut le voir clairement sur la figure 5.

Il suffit maintenant de refaire la construction déjà indiquée à la figure 3 pour obtenir l'allure du courant du collecteur et des tensions du collecteur et de la base.

En examinant la figure 5 on notera que ces tensions sont loin d'être sinusoïdales.

La raison de ceci est que le signal de commande est relativement grand et que la caractéristique dynamique mutuelle (quadrant II) balayée par le point de fonctionnement est limitée maintenant par les points C et E ; comme on peut le voir, elle n'est plus rectiligne, mais bien incurvée.

Quand le courant de base passe de la valeur de repos (60µA) à la valeur maximum (120µA), le point de fonctionnement se déplace de A en C et le courant de collecteur passe de 3,33mA à 5,75mA et subit ainsi une augmentation de 5,75 – 3,33 = 2,42mA. Lorsqu'inversement le courant de base passe de 60µA à 0, le point de fonctionnement se déplace de A en E et le courant de collecteur subit une diminution de 3,33mA à 0,20mA, c'est-à-dire 3,33 – 0,20 = 3,13mA. Les deux alternances du courant de collecteur sont donc inégales, ce qui signifie que le courant de sortie de l'amplificateur est DISTORDU.

Si l'on passe maintenant de la forme du courant à celle de la tension de collecteur, on notera qu'elles sont parfaitement identiques (comme formes naturellement, puisque les amplitudes peuvent être différentes) ; ceci est dû au fait que le passage se fait par l'intermédiaire de la droite de charge et que par sa nature même, celle-ci est parfaitement linéaire.

Si l'on passe à la détermination de la forme de la tension de base on trouve une différence encore plus marquée entre les deux alternances de celle-ci, car la caractéristique dynamique d'entrée du quadrant III est beaucoup plus incurvée que la caractéristique mutuelle du quadrant II.

En conclusion si l'on augmente le signal d'entrée, on augmente aussi le signal à la sortie, mais à cause de la courbure inévitable de la caractéristique dynamique des quadrants II et III dûe à la nature même du transistor, le signal à la sortie sera de plus en plus déformé.

Si l'amplificateur doit amplifier un signal phonique (BF) il est évident que la déformation, c'est-à-dire la distorsion du signal de sortie ne pourra être tolérée que jusqu'à un certain point.

Pour cette raison, l'amplitude maximum du signal d'entrée, et ainsi du signal de sortie, est limitée presque toujours par la distorsion maximum admise, et non pas par les deux points de saturation et d'interdiction, qui représentent les points limites que peut atteindre le point de fonctionnement.

Pour obtenir l'amplitude maximum du signal de sortie avec une distorsion minimum, il faut choisir convenablement la tension d'alimentation VCC et la valeur de la résistance de charge RC, de façon à obtenir une caractéristique dynamique mutuelle la plus droite possible. Il faut ensuite déterminer sur celle-ci le point de repos de façon à pouvoir balayer au maximum cette courbe pratiquement linéaire, en ayant soin d'éviter que le point de fonctionnement n'atteigne la partie supérieure où la courbe commence à s'incurver. Ceci signifie que dans le cas de la figure 5, il faut limiter l'excursion du point de fonctionnement à la partie E-B, et fixer le point de repos vers le milieu de celle-ci.

3 – COMMANDE EN COURANT ET EN TENSION

Dans le cas de la figure 3 et de la figure 5, le transistor est commandé par un certain courant de base, imposé par le schéma de la figure 2.

En effet, le courant du signal de la base est défini par la résistance de forte valeur (100kΩ) placée en série avec la liaison de la base, et a donc ainsi la même forme sinusoïdale que la tension vp appliquée en amont de la résistance R1.

Si le signal appliqué est de forte amplitude (figure 5) de façon à balayer une grande partie de la caractéristique d'entrée du quadrant III, la tension VBE aura une forme fortement distordue, mais qui n'a pas d'effet sur la forme du courant et de la tension de sortie, parce que le courant de base reste toujours sinusoïdal. C'est pour cette raison, que l'on dit que le transistor est commandé en courant, parce que c'est la forme du courant de base qui est imposée par le circuit extérieur.

Le transistor peut aussi être commandé d'une autre façon, en appliquant par exemple directement la tension de commande entre la base et la masse, comme indiqué sur la figure 6. L'amplitude de la tension de commande vBp peut encore être réglée par le potentiomètre P, dont la valeur ohmique devra être très faible car la tension vp appliquée à ses bornes est très faible (de l'ordre de quelques dixièmes se volts).

De cette façon, on impose la forme de la tension de base, et la forme du courant de base sera déterminée par la caractéristique d'entrée correspondante : on dira alors que le transistor est commandé en tension.

Si le signal appliqué n'est pas de grande amplitude et qu'ainsi on puisse considérer que la partie de la caractéristique d'entrée est rectiligne (comme c'est le cas dans l'exemple de la figure 3) les commandes en courant et en tension sont équivalentes ; en effet, faire circuler un courant iBp de 20µA ou appliquer une tension vBp de 15mV conduit au même résultat final, comme on peut le voir clairement sur la même figure 3.

Quand le signal d'entrée est de forte amplitude, les deux types de commandes ne sont plus équivalents car c'est maintenant le courant au lieu que ce soit la tension de la base qui garde la forme sinusoïdale. La figure 5 illustre clairement ce qui arrive lorsque le transistor est commandé en courant ; la figue 7 illustre par contre le cas, où il est commandé par une tension.

Supposons que l'on applique sur la base, une tension vBp de 40mV ; la sinusoïde qui représente la forme de la tension de commande sera alors construite en prenant comme axe de référence, la droite horizontale qui passe par la valeur de la tension de repos de la base VBEo = 170mV.

Comme on peut le voir sur la figure 7, l'excursion de la tension de la base est délimitée par des valeurs VBEmax = 210mV et VBEmin = 130mV et par simple construction on peut passer à la détermination de la forme du courant de base par l'intermédiaire de la caractéristique d'entrée.

En examinant la figure 7, on remarquera comment maintenant (commande du transistor en tension) le courant de base a une forme assez distordue. En effet les deux alternances de IB sont différentes : accroissement du courant de base de l'ordre de 70µA contre une diminution de 40µA seulement.

Par contre, cette distorsion n'est pas du tout gênante, car elle est compensée partiellement par la courbure de la caractéristique mutuelle du deuxième quadrant. Si l'on trace en effet l'allure du courant de collecteur qui en résulte, on voit que ce dernier se rapproche de la sinusoïde ainsi que la tension du collecteur.

Ceci est dû au fait que les courbures des deux caractéristiques sont telles qu'elles se compensent en partie ; ainsi, en commandant le transistor en tension dans des conditions déterminées, on peut obtenir un signal de sortie moins distordu.

Les deux types de commande que nous venons de voir sont deux cas théoriques extrêmes qui en pratique ne sont jamais atteints. En effet, dans le cas de la figure 2, il n'est vrai qu'en première approximation que le courant de base est défini exclusivement par R1 : en réalité, en série avec R1, se trouve la résistance d'entrée du transistor dont la valeur n'est pas constante pendant tout le cycle ; pour cette raison la forme du courant de base se "ressent" plus ou moins de la présence du transistor, c'est-à-dire de la courbure de la caractéristique d'entrée. En d'autres termes, le courant de base résultant n'est pas parfaitement sinusoïdal comme on l'a supposé dans l'exemple.

Dans le cas de la figure 6, la présence du potentiomètre en série avec la résistance d'entrée du transistor, modifie aussi légèrement la caractéristique d'entrée et ainsi la forme de la tension de la base se "ressentira" plus ou moins de la forme du courant de base absorbé par le transistor et ne sera pas parfaitement sinusoïdale.

En pratique donc, ces deux types de commande ne sont réalisés qu'avec une certaine approximation, mais sont très utiles pour simplifier l'étude des circuits réels.


RÉPONSES AUX EXERCICES DE RÉVISION SUR LA 14ème LEÇON THÉORIQUE

1 – La technique de la jonction métallique (à pointe ou soudée), celle de la jonction par alliage, des jonctions par étirage et par diffusion.

2 – On fond le matériau d'impuretés et dans la masse en fusion on dissout une partie du semi-conducteur dont est formée la plaquette, c'est-à-dire la région superficielle qui est en contact avec le liquide ; ensuite, par un lent refroidissement, on obtient la recristallisation du semi-conducteur sur la structure originelle de la plaquette ; la couche recristallisée contient surtout les nouvelles impuretés qui sont du type opposé à celles qui étaient à l'origine dans la plaquette et forme ainsi dans la plaquette même une jonction P-N.

3 – Le support de cathode vient à être relié à la couche N par le procédé de la thermocompression ; le support d'anode est simplement soudé sur la couche P, qui a été traitée auparavant par une diffusion superficielle de bore.

4 – Car on améliore ainsi la dissipation thermique du transistor.

5 – Oui ; une variation dans le traitement qui précède la fermeture du transistor peut faire diminuer la valeur du coefficient β.

6 – En réduisant l'épaisseur de la base, ou bien en accélérant ces charges mêmes par formation d'un champ électrique local.

7 – Par diffusion des charges mobiles, lorsque l'on a établi auparavant un gradient d'impuretés dans l'électrode de base.

8 – Parce que le profil de ces transistors rappelle celui des de deux montagnes de forme conique ; on donne à ces montagnes d'Amérique du Sud, le nom de "Mesa".

9 – Oui. Si la résistivité dans l'électrode de base est constante il n'y a pas de champ accélérateur (interne) ; dans le cas contraire, on a formation d'un champ le long de la région où il y a un gradient d'impuretés et où la résistivité croît au lieu de décroître.


EXERCICES DE RÉVISION SUR LA 15ème LEÇON THÉORIQUE

1 – A quelle fréquence, correspond une période de 1ms ?

2 – Comment obtient-on la valeur efficace d'une tension sinusoïdale en partant de la valeur maximum (ou de crête) ?

3 – En divisant en douze parties égales, la période d'une sinusoïde et en numérotant les points obtenus de 0 à 12, à quels numéros correspond la valeur moitié de la valeur maximum de la sinusoïde ?

4 – Si l'on applique un signal sur la base d'un transistor, à quoi équivaut l'excursion du courant de base ?

5 – A quoi correspond la composante continue de la tension de collecteur ?

6 – Par quoi est donnée et à quoi correspond la composante alternative du courant de collecteur ?

7 – Comment est défini le gain en courant d'un étage amplificateur ?

8 – Le gain en puissance dépend-il des valeurs des gains en courant et en tension ?

9 – A quoi, sont dûes les distorsions du courant de collecteur ?

Fin de la leçon 15


LECON 16

1 – LES TROIS TYPES DE MONTAGES

Lorsque nous avons étudié les courbes caractéristiques des transistors, nous avons vu qu'il y avait deux possibilité différentes pour monter le transistor dans un circuit : montage en Base Commune et en Emetteur Commun.

Etant donné que le transistor présente trois connexions, il est naturel de penser qu'il existe une troisième façon de le monter dans le circuit qui, par analogie avec les deux autres, s'appellera montage en Collecteur Commun.

Nous n'avons pas parlé de ce type de montage dans la leçon théorique 8 et dans les leçons suivantes car, en général on ne donne pas dans les catalogues de transistors les familles de courbes caractéristiques et encore moins les paramètres relatifs à un tel montage. Ceci pour deux raisons : parce que le montage en collecteur commun peut être parfaitement étudié en utilisant les caractéristiques et les paramètres relatifs au montage en émetteur commun, et qu'ensuite un tel montage est très peu utilisé par rapport à ce dernier.

1 – 1 AMPLIFICATEUR EN BASE COMMUNE

Le schéma d'un étage amplificateur avec montage en base commune est indiqué à la figure 1. Comme on peut le voir, le collecteur est alimenté, à travers la résistance de charge RC par une pile qui délivre une tension négative par rapport à la masse (on considère ici, un transistor du type P-N-P) tandis que l'émetteur doit être polarisé, par l'intermédiaire de la résistance RE, par une autre pile qui délivre une tension positive par rapport à la masse.

Le signal de commande est appliqué à l'émetteur par l'intermédiaire de la résistance R1 et du condensateur C qui bloque le courant continu de polarisation ; son amplitude peut être réglée avec le potentiomètre P. Le signal de sortie est prélevé comme d'habitude sur le collecteur.

Pour pouvoir faire une comparaison entre cet amplificateur et celui étudié dans la précédente leçon, il faut faire travailler le transistor avec le même courant et la même tension de collecteur, c'est-à-dire qu'il faut encore considérer le même point de fonctionnement sur les caractéristiques du collecteur.

Pour cette raison, on choisira les mêmes valeurs de tension d'alimentation de collecteur et de résistance de charge que dans le cas du montage en émetteur commun, c'est-à-dire VCC = 9 V et RC = 1,5kΩ.

Si l'on considère les caractéristiques de collecteur (quadrant I figure 2), on peut tracer la droite de charge et fixer le point A' correspondant à la tension de repos VCBo = 4 V et au courant ICo = 3,33mA.

En transposant le point de repos A' sur la caractéristique mutuelle du quadrant II (qui en réalité est une caractéristique statique relative à la tension de collecteur de 4,5 V, mais qui en pratique coïncide avec la caractéristique mutuelle dynamique relative à une valeur quelconque de la résistance de charge, et en particulier à la résistance considérée 1,5kΩ puisque les caractéristiques de collecteur sont pratiquement des droites horizontales), on trouve le point A qui indique le courant nécessaire pour la polarisation de l'émetteur : IEo = 3,5mA.

La valeur de la résistance RE devra être telle, qu'elle laisse circuler ce courant dans l'émetteur. En supposant que la pile de polarisation de l'émetteur a une tension VEE de 3 V seulement, la tension VEBo qui va se stabiliser entre l'émetteur et la base est beaucoup plus faible que 3V. Ainsi pour calculer la valeur de RE, il faut d'abord déterminer la valeur de VEBo.

On a donc besoin de la courbe dynamique d'entrée, Il faut encore noter que la courbe d'entrée du quadrant III relative à une tension de collecteur de 4,5 V, ne peut plus être considérée comme coïncidant avec la courbe dynamique, à moins d'admettre une approximation dans le calcul, car les courbes mutuelles de tension du quadrant IV ne peuvent être considérées comme étant parfaitement horizontales (figure 2).

La construction de la courbe dynamique d'entrée est obtenue alors en se servant des courbes des quadrants I et IV et le procédé est indiqué sur la figure 2.

Il suffit de considérer les points P, Q, R, S, T, U, intersections de la droite de charge avec les différentes courbes du collecteur et de les reporter sur les courbes correspondantes du quadrant IV. En joignant les points P', Q', …etc, ainsi trouvés, on obtient une courbe, qui représente dans le quadrant IV, la droite de charge du premier quadrant. Sur cette dernière courbe, on peut marquer le point de repos A'''.

En transposant enfin, les points P', Q' etc … du quatrième quadrant au troisième, on détermine les points P'', Q'' …etc. En joignant P'', Q'' … on détermine la courbe dynamique d'entrée dessinée en pointillés sur la figure 2. Comme on peut le voir elle est sensiblement différente de la courbe statique relative à une tension de collecteur de 4,5 V.

On peut déterminer ainsi, le point de repos A''. Rappelons que le point A'' peut aussi être déterminé en menant une horizontale par le point A''', puisqu'un point de fonctionnement quelconque se trouve aux quatre sommets d'un rectangle.

En face du point A'', sur l'axe vertical dirigé vers le bas, on lit la valeur de la tension de repos de l'émetteur :

VEBo = 178mV = 0,178 V

On peut aussi déterminer la valeur de la résistance RE par la formule :

RE = (VEE - VEBo)/IEo  = (3-0,178)/3,5 = (2,822 V)/(3,5mA) = 0,8kΩ environ

Supposons que l'on applique toujours, un signal de commande à l'émetteur à la fréquence de 50 Hz, aux bornes du potentiomètre P de la figure 1.

Si l'on admet que la résistance de P est très faible devant la valeur de R1 = 2kΩ et que C est suffisamment élevé, le courant de commande de l'émetteur sera déterminé seulement par la valeur de R1 car comme nous allons le voir sous peu, la résistance d'entrée du transistor est très faible.

En réglant P, de façon à avoir en amont de R1 une tension vp de 2 V crête, la composante alternative du courant d'émetteur aura une valeur crête :

iEp = vp/R1 = (2V)/(2kΩ) = 1mA

En redessinant pour plus de clarté, les caractéristiques des quadrants I, II, et III, sur la figure 3, on peut tracer de façon habituelle la sinusoïde qui représente le signal de commande en prenant comme axe de référence, la verticale qui passe par le point de repos A.

On voit ainsi que le courant de l'émetteur prend les valeurs : IEmax = 4,5mA et IEmin = 2,5mA et accomplit une excursion de 2mA. Les formes de courant et de la tension de collecteur se déterminent facilement par la méthode bien connue maintenant. Comme la caractéristique dynamique mutuelle de courant du deuxième quadrant est pratiquement une droite, la forme du courant de collecteur sera encore une sinusoïde ainsi que la tension de collecteur.

A partir de la construction de la figure 3, on trouve que le courant de collecteur atteint une valeur maximum ICmax de 4,30mA et une valeur minimum ICmin de 2,36mA en accomplissant une excursion de 1,94mA. Par analogie, la tension de collecteur prend une valeur VCBmax = 5,45 V et VCBmin = 2,55V, c'est-à-dire que son excursion est de 2,9V.

Par contre la forme de la tension de l'émetteur n'est pas parfaitement sinusoïdale, car la caractéristique dynamique d'entrée est légèrement incurvée. Ainsi, de la valeur de repos VEBo = 178mV, la tension de l'émetteur passe à VEBmax = 190mV et à VEBmin = 160mV en accomplissant une excursion de 30mV. On remarquera que les deux alternances ne sont pas parfaitement égales, l'une ayant pour amplitude 18mV et l'autre 12mV.

Nous avons maintenant tous les éléments pour calculer les gains.

Gi = (ICmax- ICmin)/(IEmax- IEmin ) = (4,30-2,36)/(4,5-2,5) = 1,94/2 = 0,97

On trouve d'autre part, en exprimant les tensions de collecteur et d'émetteur en mV :

Gv = (VCBmax - VCBmin)/(VEBmax - VEBmin ) = (5.450-2.550)/(190-160) = 2.900/30 = 96,7

d'où le gain en puissance :

Gp = Gi x Gv = 0,97 x 96,7 = 93,8

Comme on peut le voir d'après les résultats ci-dessus, et d'après ce que l'on sait déjà, on n'a pas de gain de courant avec ce type d'amplificateur, mais l'on a un bon gain en tension. On peut donc considérer que le gain de puissance est à peu près égal au gain en tension, il est donc inférieur au gain en puissance d'un étage en émetteur commun.

Il reste encore à calculer la résistance d'entrée et de sortie d'un transistor seul et de l'étage. Pour le transistor seul, on trouve une résistance d'entrée égale à :

rVE = (VEBmax - VEBmin)/(IEmax - IEmin) = (190-160)/(4,5-2,5) = 30/2 = 15Ω

La résistance rVE est exprimée en ohm, car la tension et le courant de l'émetteur sont exprimés respectivement en mV et en mA, et sa valeur particulièrement faible est caractéristique de ce type de montage.

La résistance d'entrée de l'étage est obtenue facilement en mettant en parallèle rVE et RE et l'on trouve :

re = (rE x RE)/(rE + RE ) = (15 x 800)/(15+800) = 14,7Ω

En ce qui concerne la résistance de sortie du transistor, il est plus facile de la calculer à l'aide de la formule qu'avec les caractéristiques de la figure 3. Celle-ci, ainsi que celle de l'étage, sera déterminée plus tard.

Examinons maintenant les phases, en regardant la figure 3.

Quand le courant de l'émetteur augmente, le courant de collecteur augmente aussi, mais tandis que le premier croît vers des valeurs positives, le second croît vers des valeurs négatives. Ceci est dû au fait, que l'émetteur est alimenté avec une tension positive tandis que le collecteur est alimenté par une tension négative. Il en résulte que les courants d'entrée et de sortie sont en opposition de phase.

Si l'on observe maintenant les tensions, on remarque qu'à une augmentation de la tension de l'émetteur correspond une diminution de la tension du collecteur. Comme les deux tensions ont des polarités opposées, et pour la même raison que ci-dessus, elles ne se trouvent plus en opposition de phase, mais bien en phase.

La tension et le courant d'entrée se trouvent donc en phase tandis que le courant et la tension de sortie sont en opposition de phase exactement de la même façon que dans le cas de l'amplificateur en émetteur commun.

1 – 2 AMPLIFICATEUR A COLLECTEUR COMMUN

Le schéma de l'amplificateur à collecteur commun diffère de celui à émetteur commun, uniquement par la disposition de la résistance de charge.

Tandis que dans l'amplificateur à émetteur commun, la résistance de charge est placée dans le collecteur et que l'émetteur est relié à la masse, dans le montage en collecteur commun la résistance de charge est placée dans l'émetteur et le collecteur est relié directement au moins (si le transistor est du type P-N-P, ou bien au positif s'il est du type N-P-N) de la pile.

Dans ce cas, lorsque le collecteur est maintenu à un potentiel constant par rapport à la masse, il ne peut y avoir de composante alternative sur le collecteur. Pour cette raison, le schéma est dit collecteur à la masse ou collecteur commun.

Le schéma de l'amplificateur est indiqué sur la figure 4 : la résistance de charge maintenant indiqué RE, puisqu'elle est placée dans la liaison de l'émetteur, a été choisie encore égale à 1,5kΩ, c'est-à-dire égale à celle du cas précédent pour pouvoir faire une comparaison valable avec celui-ci.

L'alimentation est encore réalisée à l'aide d'une pile unique de 9 V, et sert aussi à la polarisation de la base par l'intermédiaire de la résistance RB, dont la valeur sera déterminée par la suite, de façon à faire travailler encore le transistor au même point de repos.

Le signal de commande est appliqué à la base par l'intermédiaire de la résistance R1 de 100kΩ et du condensateur C de valeur appropriée, et son amplitude est encore réglée au moyen du potentiomètre P de résistance très faible pour pouvoir être négligée devant les 100kΩ de R1.

Il faut encore remarquer que maintenant, la charge RE est traversée par le courant de l'émetteur et non plus par celui de collecteur comme dans le cas précédent. Comme nous l'avons déjà vu, le courant IE de l'émetteur est donné par la somme du courant IC de collecteur et du courant IB de la base, ce dernier étant β fois plus petit que celui du collecteur : on peut donc négliger IB devant IC et admettre que les courants d'émetteur et de collecteur sont égaux.

Cette simplification que nous avons déjà faite en d'autres occasions (par exemple dans l'étude des circuits de polarisation) permet une étude plus rapide sur les caractéristiques du transistor. En effet, comme je vous l'ai déjà dit, on ne donne en général pas les caractéristiques relatives au montage en collecteur commun ; on doit donc se servir de celles relatives au montage en émetteur commun. Sur ces caractéristiques figure le courant de collecteur IC et non pas IE : on voit donc l'avantage de pouvoir considérer l'égalité de IC avec IE, car on peut ainsi utiliser les caractéristiques telles qu'elles sont.

L'approximation ainsi faite n'est valable que pour des transistors dont le β est supérieur ou égal à 25 – 30, parce que sinon, le courant de base ne serait plus suffisamment petit pour pouvoir être négligé devant celui du collecteur. Dans le cas de l'exemple ci-dessus le β est de l'ordre de 50, ce qui signifie que IB est le cinquantième de IC, l'erreur commise en le négligeant n'est que de 2%.

En ce qui concerne les constructions graphiques sur les caractéristiques des quadrants I et II on procède de la même manière que pour le montage émetteur commun : on trace donc la droite de charge et la courbe dynamique mutuelle de courants (figure 5).

On détermine ensuite le point de repos (A' dans le premier quadrant et A dans le second) correspondant à la tension de collecteur VCEo = 4 V : on obtient ainsi la valeur ICo = 3,33mA et IBo = 60µA comme dans le cas de l'amplificateur à émetteur commun.

En ce qui concerne au contraire la courbe dynamique d'entrée, il faut faire en outre les observations suivantes. En regardant le schéma de la figure 4, on voit que le signal d'entrée, c'est-à-dire le signal de commande, est appliqué encore entre la base et la masse, comme dans le cas de l'amplificateur à émetteur commun, cependant maintenant l'émetteur est relié à la masse, non plus directement mais par l'intermédiaire de la résistance de charge RE.

La tension d'entrée est donc appliquée, non plus simplement entre la base et l'émetteur, mais à l'ensemble jonction base-émetteur et résistance de charge qui se trouve en série. Si l'on veut tracer la caractéristique d'entrée de l'étage, il faut considérer que la tension VB qui existe entre la base et la masse, est égale à la somme de la tension VBE et de la tension VE qui se stabilisent respectivement entre la base et l'émetteur et entre l'émetteur et la masse.

La courbe dynamique d'entrée donnée est relative uniquement à la seule tension VBE et n'est valable uniquement que pour un transistor seul et non pas pour tout l'étage. La courbe dynamique d'entrée de l'étage devra donc être tracée comme défini ci-dessous et illustré figure 5.

Pour cela, il faut considérer les différents point de la droite de charge, par exemple les points d'intersection de la droite avec les différentes courbes de collecteur, correspondant aux courants de base 0, 20µA, 40µA, 60µA, etc… Pour chacun de ces points, on détermine les tensions VE et VBE et leur somme VB.

En reportant dans le troisième quadrant, les valeurs de VB ainsi trouvées en face des valeurs correspondantes de IB, on obtient les points P''', Q''', R''', etc… qui joints par une ligne, donnent la courbe dynamique illustrée.

Pour illustrer la méthode, nous allons prendre un seul point, par exemple le point de repos : pour les autres, il suffira de faire la même construction graphique.

Le point de repos A' correspond à un courant de base IBo de 60µA : en abaissant la verticale passant par A' on trouve à l'intersection avec l'axe horizontal, la valeur de la tension qui se stabilise entre le collecteur et l'émetteur. Pour le point A', on trouve VCE = 4 V. Comme entre le collecteur et la masse est appliquée la tension d'alimentation VCC de 9 V, on en déduit que la tension aux bornes de RE est donnée par la différence entre les 9 V appliquées et les 4 V qui se stabilisent entre collecteur et la masse.

On a donc :

VE = VCC – VCE = 9 – 4 = 5 V

En répétant cette opération pour les différents points considérés, il est pratique de tracer une seconde échelle horizontale, graduée encore en volts, dont le zéro se trouve en face de la valeur VCC = 9 V (lue sur la précédente échelle) et dont les graduations croissent de la droite vers la gauche (figure 5). Sur cette échelle, on pourra lire directement les valeurs de la tension VE ; en effet, en prolongeant l'axe vertical passant par le point A' jusqu'à rencontrer cette nouvelle échelle, on lit directement la valeur VEo = 5 V.

La valeur de la tension existant entre la base et l'émetteur pour un courant de base de 60µA peut être déterminée immédiatement ; il suffit de transposer le point de repos A' du premier quadrant dans le troisième sur la courbe dynamique d'entrée du transistor, c'est-à-dire en A''. En correspondance de ce point, on lit sur l'échelle verticale VBEo = 0,17 V.

En ajoutant les deux valeurs ainsi trouvées, on détermine la tension qui existe entre la base et la masse :

VB = VBE + VE = 0,17 + 5 = 5,17 V.

Cette valeur de la tension de base et la valeur du courant de base (60µA pour le point A') doivent être reportées dans le troisième quadrant et lues respectivement sur l'échelle verticale de gauche, orientée vers le bas et indiquée sur la figure par –VB et sur l'échelle horizontale de gauche ; on détermine ainsi le point A''', qui est un des points de la courbe dynamique d'entrée de l'étage.

Il faut remarquer, que les valeurs de la tension VB sont nettement plus élevées que celles de la tension VBE et on ne peut plus utiliser pour la courbe dynamique d'entrée de l'étage, la même échelle verticale que celle qui était valable pour la courbe dynamique d'entrée du transistor seul, parce que cette dernière n'était graduée qu'en dixièmes de volt. Il est donc nécessaire de tracer une seconde échelle verticale graduée jusqu'à 10 volts environ (voir figure 5) : échelle verticale de gauche orientée vers le bas.

En procédant de la même façon pour les autres points, on détermine la courbe complète. En considérant les points P', Q', R', etc… On trouve les valeurs qui sont reportées dans le tableau ci-dessous.

POINTS IB VE VBE VB
P' 0µA 0,3V 0,065V 0,365V
P' 20µA 2,0V 0,130V 2,130V
P' 40µA 3,6V 0,155V 3,755V
P' 60µA 5,0V 0,170V 5,170V
P' 80µA 6,4V 0,185V 6,585V
P' 100µA 7,5V 0,195V 7,695V
P' 120µA 8,5V 0,205V 8,705V
P' 140µA 8,7V 0,215V 8,915V

Les valeurs de la seconde et de la dernière colonne servent à déterminer les points P''', Q''', R''', etc… qui joints par une ligne, donnent la courbe dynamique dessinée (courbe en pointillés dans le troisième quadrant de la figure 5).

Après avoir déterminé ainsi la courbe dynamique d'entrée de l'étage, on peut procéder à la détermination de RB nécessaire pour que le point de repos soit en A' comme il a été supposé avant de passer à la détermination des formes des tensions et des courants.

Par commodité, et pour plus de clarté, les courbes statiques du premier quadrant et les courbes dynamiques du deuxième et du troisième quadrant ne sont pas tracées sur la figure 6. Le calcul de RB peut être fait de deux façons différentes. On peut utiliser la formule :

RB = (VCC - VBo)/IBo  = (9-5,17)/60 = 3,83/(60 ) = 0,064MΩ = 64kΩ environ

Ou bien on peut encore tracer la droite qui passe par le point de repos A'' et le point K qui indique sur l'axe vertical, la tension d'alimentation de RB, soit VCC = 9 V. En prolongeant cette droite jusqu'à l'intersection avec l'axe horizontal, on lit sur celui-ci (point H) la valeur 140µA.

En divisant la tension relative au point K, par le courant relatif au point H on trouve la valeur de RB. En effet on a :

RB = 9 V / 140µA = 0,064MΩ = 64kΩ

valeur trouvée précédemment.

Supposons maintenant, que l'on applique à la base du transistor, un signal, dont l'amplitude peut être réglée par le potentiomètre P, de façon à obtenir une composante alternative iB dont la valeur de crête soit de 20µA, pour être dans les mêmes conditions que dans le cas de l'amplificateur à émetteur commun, de la leçon précédente.

En faisant les mêmes constructions graphiques, il sera facile de déterminer les formes du courant et de la tension du collecteur, ou mieux de la tension de l'émetteur, ainsi que celle de la tension de base.

Sur la figure 6, on trouve que le courant du collecteur (qui pour les raisons déjà énoncées sera considéré comme égal au courant de l'émetteur) prend encore les mêmes valeurs de repos IEo = 3,33mA, on passe à un maximum IEmax = 4,26mA et à un minimum de 2,40mA en accomplissant une excursion de 1,86mA.

La tension entre le collecteur et l'émetteur, lue sur l'échelle indiquée – VCE, passe de la valeur de repos de 4 V à un maximum de 5,4V et à un minimum de 2,6V ; en correspondance avec ces valeurs, la tension de l'émetteur, dont les valeurs peuvent être lues directement sur l'échelle repérée –VE, passe de la valeur de repos VEo = 5V à la valeur minimum VEmin = 3,6V et à la valeur maximum VEmax = 6,4V en accomplissant une excursion de 2,8V.

Si nous passons à la tension de base nous trouvons maintenant des valeurs beaucoup plus grandes que celles relatives à l'amplificateur à émetteur commun. En effet, la tension de repos a pour valeur VBo = 5,17 V, et atteint la valeur maximum VBmax de 6,585V et minimum de 3,755 V en accomplissant une excursion de 2,83 V.

De ces valeurs, on peut déduire immédiatement les différents gains. On a en effet, en exprimant les courants d'émetteur et de base en µA :

Gi = (IEmax - IEmin)/(IBmax - IBmin) = (4.260-2.400)/(80-40) = 1.860/40 = 46,5

En exprimant les tensions de l'émetteur et de la base en volts on a :

Gv =  (VEmax - VEmin)/(VBmax - VBmin) = (6,4-3,6)/(6,585-3,755) = 2,8/2,83 = 0,99

et enfin :

Gp = Gi x Gv = 46,5 x 0,99 = 46

En comparant ces résultats avec ceux obtenus avec l'amplificateur à émetteur commun, on voit que le gain en courant est resté le même, que le gain en tension est maintenant inférieur à l'unité, ce qui signifie que la tension de sortie est plus faible que celle de l'entrée. Le gain en puissance est pratiquement le même que celui en courant.

Ainsi, la propriété particulière de l'amplificateur en collecteur commun est d'avoir un gain notable en courant (presque égal à la valeur du coefficient β du transistor), mais pas de gain en tension.

Une autre particularité de ce circuit est donnée par sa résistance d'entrée qui est notablement plus élevée que celle avec les autres montages. En effet, si l'on applique la formule en exprimant la tension en volt et le courant de base en µA (la résistance est alors donnée enMΩ) la résistance d'entrée du transistor est :

rB = (VBmax - VBmin)/(IBmax - IBmin) = (6,585-3,755)/(80-40) = 2,83/40 = 0,071MΩ = 71kΩ

Comme la valeur de la résistance d'entrée du transistor est déterminée par les valeurs de la tension et du courant de base obtenues par l'intermédiaire de la caractéristique dynamique d'entrée, et comme cette dernière est déduite compte tenu de la droite de charge, on comprend que la valeur de rB dépend non seulement de la caractéristique du transistor, mais aussi de la valeur de RE.

Tandis que dans le cas de l'amplificateur en émetteur commun, la résistance d'entrée avait une valeur relativement faible (on avait trouvé rB = 0,8kΩ) et qu'elle était pratiquement indépendante de la valeur de la résistance de charge, dans le cas de l'amplificateur en collecteur commun, elle est beaucoup plus élevée et on démontre que sa valeur est approximativement égale à β fois la valeur de la résistance de charge.

En effet, dans le cas de l'exemple, RE = 1,5kΩ et β = 50 (comme on peut d'ailleurs le vérifier sur la figure 6, pour le point de repos A') et on a :

rB = β x RE = 50 x 1,5 = 75kΩ

c'est-à-dire une valeur presque égale à celle que l'on a calculée.

A cause de la présence de RB, dont la valeur est du même ordre de grandeur que celle de la résistance d'entrée du transistor, (et non plus beaucoup plus grande que celle-ci comme c'était le cas pour les autres types d'amplificateurs), la résistance d'entrée de l'étage sera plus faible. Elle sera en effet égale, à la mise en parallèle de rB et de RB :

re = (rB x RB)/(rB + RB) = (71 x 64)/(71+64) = 33,7kΩ

En ce qui concerne la résistance de sortie nous calculerons sa valeur ultérieurement.

En examinant la figure 6, on peut dire que les courants d'entrée et de sortie sont en phase, comme pour l'amplificateur en émetteur commun. De même, les tensions à l'entrée et à la sortie (cette dernière devra être lue sur l'échelle – VE et non pas sur – VCE) sont en phases : ainsi à une augmentation de VB correspond un accroissement de VE.

2 – UTILISATION DES PARAMÈTRES

Dans l'étude faite jusqu'à maintenant sur les trois types d'amplificateurs, on a utilisé les caractéristiques de collecteur et les courbes mutuelles soit pour déterminer les gains, soit pour calculer la résistance d'entrée, soit pour voir le mécanisme de fonctionnement de l'amplificateur à transistors.

Les constructions graphiques permettent d'obtenir des résultats suffisamment précis seulement lorsque l'amplitude du signal appliqué est grande, comme nous l'avons vu dans les exemples précédents. Lorsque le signal d'entrée est très faible, comme c'est le cas dans les étages préamplificateurs où l'amplitude de crête de la tension d'entrée peut se réduire à des fractions de microampère, on peut voir rapidement en examinant les caractéristiques sur les exemples précédents, qu'il est impossible de tracer des sinusoïdes d'amplitude aussi réduite et par conséquent il est impossible de faire des constructions graphiques.

D'autre part, quand des signaux aussi faibles sont en jeu, il n'est pas en général intéressant de déterminer les formes des grandeurs de sortie, parce que dans ce cas les distorsions introduites par le transistor peuvent être négligées et l'on sait de toute façon que ces formes seront sinusoïdales.

En effet, si le signal d'entrée est très faible, la région utile de la caractéristique mutuelle (ou celle d'entrée) balayée par le point de fonctionnement sera très réduite, et même si la caractéristique dans son ensemble est courbe, la faible région balayée pourra être considérée comme étant rectiligne.

Dans ce cas, il faut déterminer les gains, les résistances d'entrée et de sortie, à l'aide de formules en utilisant les paramètres des transistors.

Naturellement, les caractéristiques gardent encore tout leur intérêt dans la détermination du point de fonctionnement et du circuit de polarisation du transistor.

Les formules relatives aux trois types d'amplificateurs seront données plus tard. Entre toutes celles qui existent, nous ne prendrons que celles qui utilisent les paramètres hybrides, étudiés en leur temps, et ferons des exemples numériques sur les circuits déjà examinés afin d'illustrer les constructions graphiques sur les caractéristiques.

2 – 1 AMPLIFICATEUR EN EMETTEUR COMMUN

Si nous voulons avoir recours à des formules utilisant des paramètres hybrides, il faut avant tout déterminer les valeurs de ces paramètres pour le point de repos choisi. Pour simplifier le problème reprenons le schéma considéré dans la leçon précédente er redessiné à la figure 7. Nous pouvons déterminer les valeurs des paramètres hybrides du transistor en utilisant le procédé illustré dans la douzième leçon théorique.

Pour le point de repos du schéma de la figure 7, caractérisé par VCEo = 4 V et ICo = 3,33mA, on trouve que les paramètres hybrides relatifs à ce point (nous avons omis volontairement le calcul, qui est le même que celui indiqué dans la douzième leçon) sont les suivantes :

Gain en courant

En supposant que RC = 1,5kΩ, le gain de courant est :

Gi = h21e/(1+h22e x RC)) = 49,5/(1+(0,068 x 1,5)) = 49,5/(1+0,102) = 49,5/1,102 = 44,9

Résistance d'entrée

La résistance d'entrée d'un transistor est donnée par la formule :

rB = h11e – (Gi x h12e x RC) = 0,77 – (44,9 x 0,00043 x 1,5) = 0,77 – 0,029 = 0,741kΩ

Remarquez toutefois, que le terme soustractif a en général un effet pratiquement négligeable à cause de la très faible valeur de h12e. En négligeant ce terme, on peut obtenir une formule simplifiée de la résistance d'entrée du transistor.

rB = h11e = 0,8kΩ

Dans le cas de l'amplificateur à émetteur commun, on peut dire que la résistance d'entrée du transistor coïncide pratiquement avec le paramètre h11e.

Gain en tension

Connaissant les valeurs de Gi et de rB on peut facilement calculer le gain en tension :

Gv = Gi RC/rB  = 44,9 x 1,5/0,741 = 44,9 x 2,024 = 90,87

On voit ainsi, que le gain en tension est pratiquement égal au gain en courant multiplié par le rapport de la résistance de charge divisée par la résistance d'entrée du transistor. Comme dans le cas du montage à émetteur commun la résistance de charge peut être beaucoup plus grande que la résistance d'entrée, le gain en tension sera plus grand que le gain en courant.

Gain en puissance

Le gain en puissance est toujours donné par le produit du gain en courant par celui de la tension : Gp = Gi x Gv ; mais en tenant compte de la formule précédente donnant le gain en tension, le gain en puissance peut être trouvé directement à partir du gain en courant par la formule suivante :

Gp = Gi2 x RC/rB  = (44,9)2 x 1,5/0,741 = 2.016 x 2,024 = 4.080

Résistance de sortie

Il reste encore à calculer la résistance de sortie du transistor. Les formules utilisées en général, donnent la conductance de sortie gc qui pour le montage en émetteur commun est pratiquement égale au paramètre h22e. On a donc :

Gc = h22e = 0,068mA/V

rC = 1/gc  = 1/h22e  = 1/0,068 = 14,7kΩ

Les résistances d'entrée et de sortie de l'étage seront données en mettant respectivement en parallèle rB et RB, et rc avec RC. Nous trouvons :

re = (rB x RB)/(rB + RB ) = (0,741 x 150)/(0,741+150 ) = 0,737kΩ

rS = (rC x RC)/(rC + RC ) = (14,7 x 1,5)/(14,7+1,5 ) = 1,36kΩ

En comparant ces résultats, avec ceux obtenus dans la précédente leçon, nous voyons qu'ils sont parfaitement comparables. Les différences que l'on peut remarquer sont imputables en majeure partie au fait que dans les calculs sur les caractéristiques, on prend les valeurs de crête à crête, c'est-à-dire les excursions des différentes grandeurs, sans tenir compte qu'elles ne sont pas parfaitement sinusoïdales, mais plus ou moins distordues.

En conclusion, on peut dire que les valeurs obtenues sur les caractéristiques sont relatives au fonctionnement du transistor pour des signaux de grandes amplitude, tandis que elles obtenues à l'aide des formules sont valable à un fonctionnement pour des signaux de faible amplitude.

Ainsi, on dit souvent, que la méthode graphique (c'est-à-dire les constructions graphiques sur les caractéristiques) est adaptée dans le cas du fonctionnement avec des signaux forts, tandis que la méthode analytique (c'est-à-dire le calcul à l'aide des formules) est adaptée au cas du fonctionnement avec des signaux faibles.

Nous continuerons dans la prochaine leçon, l'étude de l'amplification et verrons en particulier le cas de l'amplificateur à base commune et en collecteur commun.


RÉPONSES AUX EXERCICES DE RÉVISION SUR LA 15ème LEÇON THÉORIQUE

1 – Une période de 1 ms correspond à une fréquence de 1kHz.

2 – La valeur efficace d'une tension sinusoïdale est égale à la valeur de crête multipliée par 0,707.

3 – La sinusoïde prend des valeurs égales à la moitié de la valeur maximum aux points 1, 5, 7 et 11.

4 – L'excursion du courant de base, équivaut à la valeur de crête à crête du signal appliqué.

5 – La composante continue de la tension du collecteur est la tension de repos du collecteur.

6 – La composante alternative du courant du collecteur est donnée par les variations du courant de collecteur et provoquée par le signal d'entrée et constitue le signal de sortie.

7 – Le gain en courant d'un étage amplificateur est défini comme le rapport entre la composante alternative du courant de collecteur et la composante alternative du courant de base.

8 – Le gain en puissance dépend des gains en courant et en tension parce qu'il est donné par leur produit.

9 – Les distorsions du courant de collecteur sont dûes à la non linéarité de la caractéristique mutuelle en courant.


EXERCICES DE RÉVISION SUR LA 16ème LEÇON THÉORIQUE

1 – Quels sont les trois types d'amplificateurs à transistors ?

2 – Quelle est la différence de schéma entre l'amplificateur à collecteur commun et celui en émetteur commun ?

3 – Quand peut-on utiliser les constructions graphiques sur les caractéristiques ?

4 – Quand faut-il avoir recours aux formules pour le calcul des gains et des résistances d'entrée et de sortie ?

5 – Quelle est la valeur approximative de la résistance d'entrée d'un amplificateur à émetteur commun ?

6 – Quel est le gain en tension de l'amplificateur en collecteur commun ?

7 – Quel est approximativement le gain en courant de l'amplificateur en collecteur à la masse ?

8 – La résistance d'entrée d'un amplificateur collecteur à la masse est-elle plus grande ou plus faible que celle d'un amplificateur avec l'émetteur à la masse ?

9 – Connaissant le gain en courant Gi et le gain en puissance Gp, peut-on déterminer directement le gain en tension Gv ?

Fin de la leçon 16


LECON 17

1 – UTILISATION DES PARAMÈTRES

(suite de l'étude de la 16ème leçon Théorique)

1 – 1 AMPLIFICATEUR A BASE COMMUNE

On utilise encore des formules analogues à celles vues dans la 16ème leçon dans le cas du montage en émetteur commun. La seule différence est que les paramètres hybrides à utiliser sont ceux relatifs au montage en base commune.

Si l'on reprend le schéma de la figure 1 (16ème théorique) dans lequel le point de repos est encore caractérisé par une tension et par un courant de collecteur dont les valeurs sont respectivement 4 V et 3,333mA, et si l'on utilise les paramètres hb donnés dans la douzième leçon théorique, on trouve :

En appliquant les formules, on trouve les résultats ci-après :

Gain en courant

Gi = h21b/(1+h22b x Rc ) = 0,98/(1+ 0,00135 x 1,5) = 0,98/1,002 = 0,978

Remarquez que cette valeur est très proche du coefficient d'amplification α

Résistance d'entrée du transistor (avec Rc = 1.500Ω)

rVE = h11b + (Gi x h12b x Rc) = 15 + (0,978 x 0,0006 x 1500) = 15 + 0,88 = 15,88Ω

On peut remarquer, que comme les valeurs de rVE et h11b sont faibles, il est préférable de les exprimer en Ω, plutôt qu'en kΩ comme dans l'exemple du montage en émetteur commun.

Gain en tension

Gv = Gi Rc/rE  = 0,978 1.500/15,88 = 0,978 x 94,45 = 92,37

Gain en puissance

Gp = Gi2 Rc/rE  = (0,978)2 x 1.500/15,88 = 0,956 x 94,45 = 90,29

Résistance de sortie du transistor

La formule donne la conductance de sortie gc.

Dans le cas du montage en base commune, on ne peut pas admettre que gc soit simplement égal au paramètre h22b, et il faut encore tenir compte d'autres paramètres ; d'où la formule suivante :

gc = h22b + (h21b x h12b)/(h11b+RG )

où RG est donné par la mise en parallèle de toutes les résistances qui sont branchées entre l'émetteur et la masse ou entre l'émetteur et la pile de polarisation. Dans le cas de la figure 1 (théorique 16), il faut calculer la mise en parallèle de RE et R1 (en effet R1 est branché à la masse par l'intermédiaire de P, mais on suppose que la valeur de P peut être négligée devant R1) ; ainsi, comme RE = 0,8kΩ et R1 = 2kΩ, on a :

RG = (RE x R1)/(RE+R1 ) = (0,8 x 2)/(0,8+2) = 0,57kΩ

En introduisant cette valeur dans la formule précédente, et en se rappelant que h22b est exprimé en mA/V, tandis que h11b et RG le sont en kΩ, on obtient :

gc = 0,00135 + (0,98 x 0,0006)/(0,015+0,57) = 0,00135 + 0,000588/0,585 = 0,00135 + 0,001 = 0,00235mA/V

d'où rc = 1/gc  = 1/0,00235 = 425kΩ

Enfin les résistances d'entrée et de sortie de l'étage s'obtiendront en mettant en parallèle rVE et RE d'une part, et rc et RC d'autre part. On peut remarquer tout de suite que comme RE est beaucoup plus grand que rVE (800Ω contre 15,88Ω) et que rc est beaucoup plus grand que Rc (425kΩ contre 1,5kΩ), ce qui est typique pour le montage en base commune, la résistance d'entrée re est pratiquement égale à la résistance d'entrée du transistor rVE et que la résistance de sortie rS est pratiquement égale à la résistance de charge RC.

En effet, si l'on effectue les calculs, on trouve :

re = 15,58Ω, ce qui est pratiquement égal à 15,88Ω et rS = 1.498Ω ce qui est pratiquent égal à 1.500Ω.

1 – 2 AMPLIFICATEUR A COLLECTEUR COMMUN

On peut utiliser pour l'amplificateur à collecteur commun, les mêmes formules que celles utilisées dans le montage en base commune en remplaçant les paramètres hb par les paramètres hc, c'est-à-dire ceux relatifs au montage en collecteur commun. Comme ces paramètres ne sont pas en général donnés dans les manuels, on préfère avoir recours à d'autres formules qui utilisent elles les paramètres he, c'est-à-dire ceux relatifs au montage en émetteur commun.

En regardant le schéma de la figure 4 (Théorique 16), on voit que le point de repos du transistor est encore le même que celui de la figure 7 de la même théorique (VCEo = 4 V, ICo = 3,33mA). Les paramètres he seront donc les mêmes que ceux qui ont été considérés pour le montage en émetteur commun. On trouve :

Gain en courant

Gi = (1+ h21e)/(1+(h22e x RE)) = (1+49,5)/(1+(0,068 x 1,5)) = 50,5/1,102 = 45,8

Résistance d'entrée du transistor

rB = h11e + (Gi x RE) = 0,77 + (45,8 x 1,5) = 0,77 + 68,7 = 69,47Ω

Gain en tension

Gv = Gi x RE/( rB ) = 45,8 x 1,5/69,47 = 45,8 x 0,0216 = 0,989

A cause de la valeur élevée de la résistance d'entrée par rapport à la résistance de charge, le gain en tension résultant est légèrement plus petit que 1, et indépendant de la valeur de Rc ; ceci est une des particularités du montage en collecteur commun, comme on l'a déjà vu précédemment.

Gain en puissance

Gp = Gi2 RE/rB  = (45,8)2 x 1,5/69,47 = 2.097,6 x 0,0216 = 45,3

Le gain de puissance est donc légèrement inférieur au gain en courant.

Résistance de sortie du transistor

On doit calculer tout d'abord la conductance de sortie gE. La valeur RG qui apparait dans la formule suivante est donnée par la mise en parallèle de RB et R1 (figure 4 – théorique 16) ; étant donné que RB = 64kΩ et que R1 = 100kΩ, RG sera égal à 39kΩ.

On obtient donc :

gE = h22e + (1+ h21e)/(h11e+ RG ) = 0,068 + (1+49,5)/(0,77+39) = 0,068 + 50,5/39,77 = 0,068 + 1,27 = 1,338mA/V

et

rVE = 1/gE  = 1/1,338 = 0,747kΩ

Enfin les résistances d'entrée et de sortie de l'étage se calculant comme à l'habitude, on trouve :

re = (rB x RB)/(rB+RB ) = (69,47 x 64)/(69,47+64) = 33,3kΩ

rs =  (rE x RE)/(rE+RE ) = (0,747 x 1,5)/(0,747+1,5) = 0,50kΩ

En comparant ces résultats avec ceux trouvés par la méthode graphique, on peut voir qu'il n'y a pas une trop grande différence.

2 – COMPARAISON ENTRE LES DIFFÉRENTS TYPES D'AMPLIFICATEUR -

Après tous ces calculs, qui peuvent présenter un aspect confus et incompréhensible, il est bon de les rassembler dans un tableau unique pour pouvoir les comparer plus facilement et étendre les conclusions aux trois types d'amplificateurs.

Dans le tableau de la figure 1, ont étés rassemblés les résultats obtenus pour les trois types d'amplificateurs dans le cas d'un fonctionnement avec signaux faibles. En observant les valeurs des gains, on peut noter que, pour l'amplificateur à émetteur commun, le gain en courant et le gain en tension sont tous les deux élevés, et qu'ainsi le gain en puissance est très élevé.

Pour l'amplificateur en base commune, le gain en courant est de l'ordre de 1, ce qui signifie que ce type d'amplificateur ne présente pas d'amplification en courant. Le gain en tension est par contre comparable à celui de l'amplificateur en émetteur commun. Le gain en puissance lui, est pratiquement égal à celui en tension et est donc nettement inférieur à celui du montage en émetteur commun.

Pour l'amplificateur en collecteur commun, les résultats sont différents. On note encore un gain en courant comparable à celui du montage en émetteur commun, tandis que le gain en tension est presque égal à 1. Le gain en puissance est donc pratiquement égal au gain en courant.

En d'autres termes on peut dire, que tandis que l'amplificateur en émetteur commun amplifie aussi bien le courant que la tension, l'amplificateur en base commune amplifie seulement la tension et que l'amplificateur en collecteur commun amplifie seulement le courant.

En passant aux résistances d'entrée et de sortie du transistor, on note que dans le cas du montage en base commune, on a une résistance d'entrée très faible et une résistance de sortie très élevée ; dans le cas du montage en collecteur commun, c'est le contraire : une résistance d'entrée très élevée et une faible résistance de sortie. L'amplificateur en émetteur commun présente au contraire des résistances de valeur intermédiaire entre les précédentes et assez proches entre elles, bien que la résistance d'entrée soit en général inférieure à celle de sortie.

On peut donc faire les conclusions suivantes :

Dans les le tableau de la figure 2, ont été rassemblées les propriétés générales en ce qui concerne les gains, les résistances d'entrée et de sortie et le déphasage entre les signaux d'entrée et de sortie pour les trois types d'amplificateurs.

3 – AMPLIFICATEUR AVEC STABILISATION THERMIQUE

Dans les deux précédentes leçons on a étudié les trois types d'amplificateurs à transistors du point de vue de leur comportement et de leurs propriétés en présence d'un signal, en négligeant pour simplifier le problème de la stabilisation thermique, que nous avons d'ailleurs étudié dans la onzième leçon de théorie.

Pour obtenir un amplificateur stabilisé du point de vue thermique il suffit de se rappeler les circuits de polarisation décrits dans la leçon correspondante, en leur apportant une légère modification, comme nous le verrons sous peu.

Il faut remarquer avant tout, qu'en pratique il n'y a vraiment que l'amplificateur à émetteur commun qui doive être stabilisé : en effet, l'amplificateur en base commune est déjà stable du point de vue thermique, de par sa nature même, et l'amplificateur à collecteur commun a un coefficient de stabilité S en général faible, à cause de la résistance RE d'émetteur de valeur toujours relativement élevée.

Il suffira de considérer uniquement l'amplificateur à émetteur commun.

3 - 1 AMPLIFICATEUR A EMETTEUR COMMUN

La stabilisation de l'amplificateur à émetteur commun est obtenue par l'intermédiaire des circuits de polarisation, illustrés dans la onzième leçon et que je vous ai reportés à la figure 3.

Étant donné que de tels circuits fonctionnent sur le principe de la contre-réaction de collecteur ou d'émetteur, il est évident qu'ils vont tendre à stabiliser aussi les accroissements et les diminutions du courant de collecteur quand ces variations sont provoquées par le signal d'entrée même.

En d'autres termes, ceci signifie que la contre-réaction qui se manifeste aussi pour le courant continu de polarisation (composante continue) se manifeste aussi pour le signal lui-même (composante alternative), avec comme effet, la réduction de l'amplification de l'étage, puisque le circuit réduit aussi les variations du courant (et donc de la tension) du collecteur qui constituent le signal de sortie.

Cet effet de contre-réaction est d'autant plus élevé que le circuit de polarisation présente un degré de stabilité thermique plus grand ; ainsi dans le cas où la stabilité est très grande, le gain de l'étage peut être tellement réduit que ce dernier devient pratiquement inutilisable.

Afin d'éviter de tels inconvénients, les circuits de polarisation sont modifiés par l'adjonction d'un condensateur. Dans le cas d'un circuit de contre-réaction de collecteur (figure 3a), la résistance de base est partagée en deux résistances R1 et R2 et le condensateur est intercalé entre leur point de jonction et la masse.

De cette façon les variations rapides de la tension du collecteur (qui constituent le signal de sortie) ne peuvent être transmises sur la base et provoquer l'effet de contre-réaction. En effet, si la capacité du condensateur CB est suffisamment élevée, la tension aux bornes de CB, ne peut suivre les variations de la tension du collecteur et reste pratiquement constante : le courant de polarisation de base IBo reste ainsi lui aussi pratiquement constant.

Pour des variations lentes de la tension du collecteur, (dûes par exemple à la variation de la température), le condensateur n'a plus la capacité suffisante pour maintenir constante la tension à ses bornes et éliminer l'effet de contre-réaction ; sa présence ne perturbe donc pas l'action stabilisatrice du circuit.

En ce qui concerne le comportement du circuit en présence d'un signal appliqué sur la base, il faut remarquer encore que la résistance de charge (comme on pourrait le démontrer facilement) est maintenant constitué par la mise en parallèle de RC et de R2, c'est-à-dire que maintenant la valeur résultante est un peu plus faible.

Dans la plupart des cas, la valeur de R2 est notablement plus élevée que RC et on peut en général négliger son effet, et considérer comme résistance de charge la seule valeur de RC.

Si nous passons maintenant au circuit stabilisé par contre-réaction d'émetteur (figure 3b), l'effet de contre-réaction peut être évité pour le signal, c'est-à-dire pour la composante alternative, en maintenant constante la tension aux bornes de RE, c'est-à-dire en plaçant un condensateur CE en parallèle sur cette dernière.

En effet de cette façon, en considérant que la valeur de la capacité CE est suffisamment élevée, presque toute la composante alternative iC passe à travers CE seulement, car le passage offert est plus facile qu'au travers de RE. On peut donc dire que CE court-circuite la résistance d'émetteur pour le courant alternatif : ainsi, pour iC, tout se passe comme si l'émetteur était relié directement à la masse et qu'il n'y avait aucun effet de contre-réaction.

La composante continue ICo par contre, ne peut pas passer par le condensateur d'émetteur, et elle est obligée de traverser la résistance RE : pour elle, l'effet de contre-réaction indispensable pour la stabilisation thermique, se manifeste donc.

Les deux composantes IC et ICo se superposent à l'intérieur du transistor et parcourent ensemble la résistance RC : en conclusion le courant ICo traverse RE et RC, tandis que iC ne traverse seulement que RC. Ceci, va provoquer un comportement différent du circuit suivant les deux composantes du courant de collecteur, et nous devrons considérer deux droites de charge différentes sur les courbes caractéristiques du transistor.

La droite qui est seulement valable pour la composante continue et qui servira à déterminer le point de repos (c'est-à-dire lorsque ICo intervient seul) sera appelé Droite de charge statique et correspondra à la valeur RC + RE puisque ICo parcourt ces deux résistances ensemble.

L'autre droite, uniquement valable pour la composante alternative sera appelé droite de charge dynamique et correspondra à la seule valeur de la résistance RC. Elle sera utilisée pour toutes les constructions graphiques relatives à la détermination des signaux de sortie, des gains et des résistances d'entée et de sortie.

C'est uniquement la valeur seule de RC qu'il faudra considérer dans les calculs d'amplification à l'aide des formules que nous avons vues précédemment.

Par analogie avec la dénomination des droites de charge, on dira RC + RE, est la résistance de charge statique et que RC est la résistance de charge dynamique.

Le circuit amplificateur avec stabilisation thermique présente l'avantage d'être moins sensible aux effets de la température, et ne présente d'autre part, aucun inconvénient majeur par rapport au circuit non stabilisé.

Pour mieux mettre en évidence les différences qui peuvent exister entre les deux circuits, il est bon de faire un exemple numérique.

Considérons pour cela, le schéma reporté sur la figure 4 ; il est dérivé du schéma considéré dans la leçon théorique 15 ; la stabilisation thermique est obtenue à l'aide de la résistance d'émetteur RE = 0,6kΩ et la base est polarisée par R2 – R3 dont les valeurs sont calculées (comme nous allons le voir sous peu) de façon à obtenir le même point de repos que dans l'exemple précédent.

Pour déterminer le point de repos, il faut tout d'abord tracer sur la caractéristique de la figure 5, la droite de charge statique correspondant à la valeur de la résistance statique RC + RE = 0,9 + 0,6 = 1,5kΩ. Cette valeur est la même que celle du circuit non stabilisé de la 15ème leçon ; la tension d'alimentation ayant la même valeur VCC = 9 V, la droite de charge statique sur les courbes caractéristiques du collecteur sera encore la même.

En fixant encore le point de repos A' correspondant à VCEo = 4 V et ICo = 3,33mA, le courant de polarisation de la base devra être encore de 60µA. Pour obtenir cette valeur du courant de polarisation de la base, on trouve facilement en négligeant la tension VBE qui existe entre base et émetteur et en admettant un courant IR de 500µA dans le pont :

VEo = ICO x RE = 3,33mA x 0,6kΩ = 2 V environ

R2 = (VCC - VEo)/(IR + IBo ) = (9-2)/(0,5+0,06) = (7 V)/(0,56mA) = 12,5kΩ

R3 = VEo/IR  = (2 V)/(0,5mA) = 4kΩ

Avec ces valeurs, on peut vérifier facilement que le coefficient de stabilisation S est de l'ordre de 3, c'est-à-dire que la stabilité thermique obtenue est très élevée.

Pour déterminer les formes des tensions et des courants, il est nécessaire de tracer la droite de charge dynamique correspondant à la résistance dynamique RC = 0,9kΩ. Celle-ci passe nécessairement par le point de repos A' parce que lorsque l'on applique le signal sur la base, le point de fonctionnement se déplace le long de la droite de charge dynamique de part et d'autre de A'.

Un autre point de la droite de charge dynamique peut être facilement déterminé sur l'axe horizontal de la tension, en face de la valeur de la tension V'CC = VCEo + (ICo x RC) = 4 + (3,33 x 0,9) = 4 + 3 = 7 V (point H sur la figure 5). Il suffit alors de joindre A' à H.

Nous pourrons maintenant maintenant tracer la courbe dynamique mutuelle, qui doit correspondre à la droite de charge dynamique, parce que c'est cette dernière qui compte pour la composante alternative du courant de collecteur et pour la détermination des formes du signal de sortie.

En réalisant les constructions bien connues maintenant, on trouve la courbe indiquée dans la figure 5 du deuxième quadrant.

Nous pourrons alors procéder à la détermination des formes et des amplitudes des excursions des différents courants et tensions.

En supposant que l'on fasse circuler dans la liaison de la base, le seul courant de commande dont l'amplitude est de 20µA, et en procédant comme d'habitude en ce qui concerne les constructions graphiques on trouve les résultats de la figure 5.

En examinant cette figure, on pourra faire la remarque suivante qu'il n'y a rien de changé par rapport au circuit non stabilisé de la 15ème leçon, en ce qui concerne la tension VBE ; par contre, en ce qui concerne les excursions du courant et de la tension du collecteur, les effets sont maintenant différents à cause de l'inclinaison différente de la droite de charge.

Pour cette raison, les gains en courant et en tension, et donc en puissance, seront différents, comme on peut le vérifier par le calcul.

Gain en courant – (en exprimant IC et IB en µA)

Gi = (ICmax-ICmin)/(IBmax- IBmin ) = (4.330-2.330)/(80-40) = 2.000/40 = 50

Gain en tension – (VCE et VBE exprimés en mV)

Gv = (VCEmax-VCEmin)/(VBEmax-VBEmin ) = (4.900-3.100)/(185-155) = 1.800/30 = 60

Gain en puissance

Gp = Gi x Gv = 50 x 60 = 3.000

Par rapport au montage non stabilisé, vous remarquerez un accroissement léger du gain en courant (50 au lieu de 46,5) et une diminution notable du gain en tension (60 au lieu de 93,33) ; en conséquence le gain en puissannce est notablement diminué (3.000 au lieu de 4.340).

Ces diminutions sont pratiquement dûes à la valeur de la résistance dynamique de charge bien plus faible maintenant (0,9kΩ au lieu de 1,5kΩ). Le choix de cette valeur plus faible de RC a été rendu nécessaire pour obtenir le même point de repos que pour le circuit non stabilisé.

La résistance d'entrée du transistor est encore la même que dans le cas du montage non stabilisé, parce que l'excursion de la tension VBE est restée inchangée. On a donc : (en exprimant VBE en mV et IB en µA).

rB = (VBEmax-VBEmin)/(IBmax-IBmin ) = (185-155)/(80-40) = 30/40 = 0,75kΩ

Par contre, la résistance d'entrée de l'étage re est plus faible maintenant, non seulement parce que la résistance branchée entre la base et le négatif de la pile est de valeur plus faible (R2 = 12,5kΩ – figure 4, au lieu de RB = 150kΩ sur la figure 2 de la 15ème leçon théorique), mais aussi à cause de la présence de R3 dont la valeur est faible et qui se trouve branchée entre la base et la masse, c'est-à-dire directement en parallèle sur l'entrée de l'étage.

On peut encore dire que la résistance d'entrée de l'étage résulte de la mise en parallèle de la résistance d'entrée du transistor et de la résistance RB, comme dans le cas du circuit non stabilisé, si l'on considère que RB est donné à son tour, par la mise en parallèle de R2 et R3 (comme ceci a été déjà fait lors de l'étude des circuits de stabilisation dans la 11ème leçon théorique).

Dans le cas de notre exemple, nous avons :

RB = (R2 x R3)/(R2+R3 ) = (12,5 x 4)/(12,5+4) = 50/16,5 = 3,03kΩ

D'où :

re = (rB x RB)/(rB+RB ) = (0,75 x 3,03)/(0,75+3,03) = 0,6kΩ = 600Ω environ

On peut donc conclure en disant que l'avantage de la stabilisation thermique se paie par deux inconvénients distincts : moins de gain en tension et en puissance et résistance d'entrée de l'étage plus faible.

4 – LIAISONS ENTRE DEUX ÉTAGES

Les amplificateurs que nous avons étudiés jusqu'à maintenant, étaient composés d'un seul étage, c'est-à-dire par un seul transistor. Très souvent par contre, le gain d'un seul étage n'est pas suffisant et on a alors le problème de liaison entre deux ou plusieurs étages, de façon à obtenir un amplificateur à plusieurs étages.

Faire la liaison entre deux étages signifie qu'il faut prélever le signal à la sortie d'un étage et l'appliquer à l'entrée de l'étage suivant, c'est-à-dire qu'il faut relier la sortie du premier étage (par exemple le collecteur) à l'entrée du second étage (par exemple à la base).

Si pour simplifier le problème, on considère deux étages identiques on peut tout de suite remarquer qu'en général la composante continue de la tension de sortie et celle de la tension d'entrée ne sont pas égales entr'elles et qu'on ne peut donc relier directement la sortie d'un étage à l'entrée de l'étage suivant sans risquer de perturber complètement les polarisations.

Le couplage entre deux étages devra donc être fait non pas par une simple liaison, mais à l'aide d'un élément qui a la propriété de ne laisser passer que la composante alternative, qui constitue le signal même, et au contraire de bloquer la composante continue que représentent les tensions et les courants de polarisation.

Deux types d'éléments différents présentent cette propriété ; le condensateur et le transformateur. Avec le premier, on obtient le couplage capacitif, avec le second, le couplage inductif.

Du point de vue électrique, le second type de liaison présente des avantages par rapport au premier, mais un transformateur quel qu'il soit coûtera toujours plus qu'un simple condensateur.

Pour cette raison, on utilise dans la mesure où c'est possible, la liaison par capacité qui est toujours plus économique.

Pour pouvoir étudier les propriété des deux types de liaisons, nous examinerons deux exemples dans le cas courant d'un amplificateur à émetteur commun.

4 – 1 LIAISON PAR CAPACITÉ

Considérons un amplificateur à deux étages égaux entr'eux, et pour simplifier chacun identique au schéma déjà vu à la figure 4.

Le couplage capacitif entre deux étages sera réalisé simplement en reliant le collecteur du premier transistor à la base du second transistor par l'intermédiaire d'un condensateur de capacité convenable, comme nous le verrons ultérieurement. Le schéma complet de l'amplificateur à deux étages est reporté à la figure 6.

En ce qui concerne le second étage, il est parfaitement identique à celui de la figure 4, et il n'y a rien à ajouter de nouveau.

Si l'on suppose que sa base est commandée avec un signal sinusoïdal, dont l'amplitude est de 20µA crête, on pourra utiliser les constructions graphiques de la figure 5.

En ce qui concerne le premier étage, il faut encore faire les remarques suivantes :

La composante continue du courant collecteur parcourt comme pour l'autre étage, la résistance de collecteur RC et celle de l'émetteur RE ; la résistance de charge statique est donc encore égale à RC + RE.

La composante alternative du courant de collecteur iC se partage en deux parties, comme il apparait clairement sur la figure 6 : le courant i1 (il traverse la résistance RC, la pile d'alimentation et retourne au transistor au travers du condensateur CE) et le courant i'1 (ce dernier se dirige au contraire vers le second transistor). A son tour ce courant i'1 se subdivise en trois parties, i2, i3 et iB2 qui tous trois retournent au transistor TR1 de la façon suivante : C1, R'2, la pile et CE (pour i2) ; C1, R'3, CE (pour i3) ; C1, jonction base-émetteur (c'est-à-dire r'B : résistance d'entrée de TR2), C'E, CE (pour iB2).

Comme d'autre part, la pile présente une résistance très faible au passage du courant alternatif comme vous le savez déjà, ainsi que les condensateurs C1, CE et C'E, ces éléments pourront être négligés en ce qui concerne la composante alternative des courants. On peut donc dire que le courant iC1 se partage en quatre courants qui traversent respectivement les quatre résistances RC, R'2, R'3 et r'B. Ces résistances devront être considérées comme étant en parallèle pour la composante alternative du courant de collecteur de TR1 et leur valeur équivalente RD constitue la résistance de charge dynamique de TR1.

Nous avons déjà vu d'autre part, que la mise en parallèle de R'2, R'3 et r'B n'est autre que la résistance d'entrée re du second étage, nous pourrons dire que dans le cas de liaison par condensateur, la résistance dynamique de charge d'un étage est constituée par la mise en parallèle de la résistance RC du collecteur de l'étage considéré et de la résistance d'entrée re de l'étage suivant.

Dans le cas de l'exemple de la figure 6, où RC = 0,9kΩ et re = 0,6kΩ (valeur calculée pour le schéma de la figure 4 et encore valable pour le second étage de la figure 6 puisque les étages son identiques), la résistance dynamique de charge du premier étage devient :

RD = (RC x re)/(RC+re ) = (0,9 x 0,6)/(0,9+0,6) = 0,36kΩ = 360Ω

Sur la caractéristique de la figure 7 cette droite de charge passe encore par le point de repos A' et par le point H de l'axe horizontal, correspondant à la tension :

V'CC = VEo + (ICo x RD) = 4 + (3,33 x 0,36) = 4 + 1,2 = 5,2 V

Pour déterminer le gain, on utilisera la construction graphique habituelle, en supposant que la base du transistor est encore parcourue par un courant alternatif de 20µA crête. Il faut encore remarquer qu'un courant de cette valeur ne peut en réalité circuler dans la base de TR1 (figure 6) : en effet, s'il en était ainsi, le courant de commande de la base de TR2 serait trop important et le transistor ne pourrait travailler dans des conditions correctes et le signal de sortie de TR2 serait complètement distordu.

En procédant comme à l'habitude, on obtient les constructions indiquées à la figure 7 et les résultats suivants :

Gain en courant – (IC et IB en µA)

Gi = (ICmax- ICmin)/(IBmax- IBmin ) = (4.340-2.320)/(80-40) = 2.020/40 = 50,5

Gain en tension – (VCE et VBE exprimés en mV)

Gv = (VCEmax- VCEmin)/(VBEmax- VBEmin ) = (4.400-3.600)/(185-155) = 800/30 = 26,67

Gain en puissance

Gp = Gi x Gv = 50,5 x 26,67 = 1.347 environ

En ce qui concerne le circuit d'entrée, rien n'est changé par rapport à la figure 5, et la résistance d'entrée du transistor est encore de 0,75kΩ et celle de l'étage de 0,6kΩ.

La faible valeur de la résistance de charge, encore diminuée par rapport à celle du cas précédent, à cause de la faible valeur de re qui se trouve en parallèle sur RC, provoque une diminution importante du gain en tension, et une augmentation légère du gain en courant.

Dans le cas d'un amplificateur à deux étages, le gain en courant Gi calculé n'exprime pas grand-chose. En effet, la valeur Gi indique de combien de fois la composante alternative iC1 du courant de collecteur est plus grande que la composante alternative iB1 du courant de commande de la base. Mais, si l'on regarde le schéma de la figure 6, on voit qu'une partie du courant iC1 est utilisée pour commander l'étage suivant. Il est donc plus intéressant d'exprimer le gain de l'étage comme étant le rapport entre le courant de commande iB2 du second étage (au lieu du courant iC1 de sortie du premier étage) et du courant iB1 de commande du premier étage.

La valeur de iB2 peut être déterminée facilement en observant que la composante alternative vC1 de la tension du collecteur est égale à la composante alternative vB2 de la tension de la base de l'étage suivant.

D'après la loi d'ohm, on a : vC1 = iC1 x RD et vB2 = iB2 x r'B

D'où :

iB2 = vB2/r'B = (iC1 x RD)/r'B

En tenant compte de ce que Gi = iC1/iB1 , le gain effectif de l'étage (qui est toujours plus petit que le gain calculé selon les résultats obtenus à la figure 7), peut être déterminé à l'aide de la formule suivante :

G'i = iB2/iB1  = (iC1 x RD)/(iB1 x r'B ) = (Gi x RD)/r'B

où RD et r'B devront être exprimées dans les mêmes unités, en kΩ ou en Ω.

Dans le cas de figure 6, où RD = 360Ω et r'B = 750Ω, on trouve un gain effectif de :

G'i = (Gi x RD)/r'B  = (50,5 x 360)/750 = 24,24

Le gain effectif est donc plus faible (environ la moitié de celui de l'exemple) que le gain propre de l'étage calculé auparavant. On peut maintenant savoir quelle doit être la valeur de crête de iB1 pour obtenir une valeur de crête de iB2 de 20µA ; on a en effet :

iB1 = iB2/(G'i) = 20/24,24 = 0,825µA environ

Le gain effectif de puissance G'p, sera réduit lui aussi par rapport à Gp :

G'p = G'i x Gv = 24,24 x 26,67 = 646,48

En comparant cette valeur de gain de puissance effectif que l'on a obtenu pour le premier étage de la figure 6 couplé par capacité au second étage, avec celui de l'étage seul de la figure 4, on note une réduction sensible (de 3.000 à 646,48, c'est-à-dire de 5 fois).

Cette réduction est dûe à la nature même du couplage par capacité, en ce sens, qu'en reliant le collecteur de TR1 à l'étage suivant, qui présente une faible résistance d'entrée, on a une forte diminution du gain en tension (à cause de la faible valeur de RD qui en résulte), et aussi une notable réduction du gain en courant (à cause du partage de iC1 en plusieurs courants).

Il faut donc remarquer que la diminution du gain est surtout dûe au fait que l'on relie un étage dont la résistance de sortie est relativement élevée, à un étage dont la résistance d'entrée est faible. Cette diminution est d'autant plus forte que la résistance d'entrée du second étage est plus faible par rapport à la résistance de sortie du premier.

On voit donc que le couplage par capacité provoque une diminution importante des gains. Si les étages sont en base commune, cette réduction de gain devient intolérable, car comme vous le savez déjà la résistance de sortie d'un tel étage est élevée, tandis que sa résistance d'entrée est très faible.

Pour cette raison, on n'utilise jamais la liaison par capacité pour des étages en base commune.

Si l'on veut connaître le gain total de cet amplificateur à deux étages, il suffira de multiplier entr'eux les gains des étages. Ainsi dans notre exemple, le gain total en courant Git sera :

Git = G'i x Gi = 24,24 x 50 = 1.212

Dans la prochaine leçon, nous continuerons l'étude des amplificateurs et examinerons le cas du couplage par induction.


RÉPONSES AUX EXERCICES DE RÉVISION SUR LA 16ème LEÇON THÉORIQUE

1 – Il y a trois sortes de types d'amplificateurs à transistors : à émetteur commun ; à base commune ; à collecteur commun.

2 – La différence essentielle de schéma entre un amplificateur à collecteur commun et à émetteur commun est la suivante : dans le premier, la résistance de charge est placée dans l'émetteur, dans le second elle est placée dans le collecteur.

3 – On peut faire des constructions graphiques sur les caractéristiques lorsque l'amplificateur travaille avec des signaux forts.

4 – On utilise de préférence les formules, lorsque l'amplificateur travaille avec des signaux faibles.

5 – La résistance d'entrée d'un amplificateur à émetteur commun coïncide approximativement avec la valeur du paramètre h11e

6 – Le gain en tension d'un amplificateur en collecteur commun est toujours inférieur à l'unité.

7 – L'amplificateur collecteur à la masse a un gain en courant presque égal à la valeur du coefficient β du transistor

8 – La résistance d'entrée d'un amplificateur en collecteur commun est beaucoup plus élevée que celle de l'amplificateur à émetteur commun.

9 – Oui. Le gain en tension Gv est Gv = Gp/Gi puisque Gp = Gi x Gv


EXERCICES DE RÉVISION SUR LA 17ème LEÇON THÉORIQUE

1 – Quelle est la valeur approximative de la résistance d'entrée d'un amplificateur en collecteur commun ?

2 – Quel le type d'amplificateur qui a le plus grand gain en puissance ?

3 – Dans un amplificateur à base commune est-ce le gain en tension ou en courant qui est le plus grand ?

4 – Quel est le type d'amplificateur qui a la plus faible résistance d'entrée ?

5 – La résistance d'entrée d'un amplificateur en émetteur commun dépend-elle de la valeur de la résistance de charge ?

6 – A quoi sert le condensateur que l'on place en parallèle sur la résistance d'émetteur d'un amplificateur stabilisé ?

7 – Quelles sont les valeurs des résistances de charge dynamique et statique dans un amplificateur stabilisé ?

8 – Qu'appelle-t-on couplage capacitif ou inductif ?

9 – Par quoi est donnée la valeur de la résistance de charge dynamique dans le cas d'un couplage capacitif ?

Fin de la leçon 17


LECON 18

Dans la dernière leçon, nous avons étudié la stabilisation thermique dans les amplificateurs à transistors. Nous avons examiné ensuite, comment on pouvait relier deux étages à l’aide d’un couplage capacitif.

Nous étudierons dans cette leçon, un autre mode de liaison appelé Couplage inductif.

1 – COUPLAGE INDUCTIF

Les deux étages de la figure 4 de la précédente leçon peuvent être couplés par induction à l’aide d’un transformateur. Comme il s’agit d’amplificateurs basse fréquence, le transformateur sera obligatoirement du type à noyau de fer (tôles au silicium à haute perméabilité) sur lequel sont bobinés les enroulements primaire et secondaire. Les dimensions du transformateur sont proportionnelles à la puissance électrique mise en jeu dans le circuit : comme dans les étages préamplificateurs, on se trouve devant des puissances très faibles, de quelques dixièmes de watts au maximum, la section du noyau sera de l’ordre d’une fraction de cm2 et la hauteur d’un peu plus de 1cm au maximum.

Le schéma des deux étages couplés par l’intermédiaire d’un transformateur se présente comme sur la fig. 1. Le second étage reste encore identique au premier.

Le premier étage devra être étudié de nouveau d’abord du point de vue de son comportement avec la composante continue, ensuite au point de vue de la composante alternative. Il est bon de considérer tout d’abord le comportement du transformateur seul, que je vous ai redessiné pour plus de clarté à la figure 2.

On supposera avant tout, que le transformateur est idéal, c’est-à-dire qu’il est sans pertes. Ceci signifie que l’on admet que la résistance ohmique des deux enroulements est très faible et que l’on peut la négliger (ce qui signifie que les pertes par effet Joule dans les conducteurs sont considérées comme étant nulles). On suppose d’autre part que les tôles sont composées d’un matériau excellent, et que l’on admet que les pertes par effet d’hystérésis sont nulles aussi.

Les suppositions sont faites ainsi afin d’étudier d’une façon plus simple l’étage amplificateur. On pourra ensuite tenir compte des effets de ces pertes, dans une étude plus exacte ; cette simplification ne modifie en rien le principe de fonctionnement du circuit.

Considérons donc le transformateur de la figure 2 et supposons que son primaire est constitué par 1.000 spires (Np = 1.000) et que le secondaire comprend 500 spires (Ns = 500). On définit comme étant le rapport de transformation n, le rapport entre le nombre de spires du primaire et le nombre de spires au secondaire. On a donc :

n = Np/Ns  = 1.000/500 = 2

Faisons maintenant traverser le primaire par un courant continu Io de quelquesmA ; ce courant va magnétiser le noyau du transformateur et celui-ci va être parcouru par un certain flux de valeur constante (ce flux sera constant, parce que le courant Io est constant lui-même) ; aucune tension n’est alors induite dans le secondaire et aucun courant ne traversera cet enroulement, ni la résistance de charge RS sur lequel il est fermé.

Pour le courant continu, le transformateur se comporte donc comme un simple conducteur (constitué par l’enroulement primaire) parcouru par le courant Io. Le schéma équivalent du transformateur se réduit donc au conducteur représenté à la figure 2-b.

Supposons maintenant que l’on superpose à la composante continue Io une composante alternative ip, obtenue en appliquant aux bornes du primaire, une tension alternative vp, par exemple de 2 V (nous considérons ici pour simplifier la valeur efficace, mais il est évident que l’on peut considérer aussi la valeur de crête).

La composante alternative ip va magnétiser à son tour le noyau du transformateur en superposant son effet à celui de la composante continue de tout à l’heure. Le flux total dans le noyau du transformateur pourra être ainsi considéré comme étant la résultante d’un flux continu, dû à Io et d’un flux alternatif dû à ip.

Ce dernier seul, parce qu’alternatif, va induire une tension alternative vs dans le secondaire et fera donc circuler dans le secondaire et dans la résistance RS, un courant alternatif is. Comme les tensions alternatives du primaire et du secondaire sont proportionnelles au nombre de spires des enroulements, on peut déterminer tout de suite, la valeur de vs : on a en effet :

vs = vp/n = 2/2 = 1 V

Si l’on suppose que la charge est de 1 kΩ, on peut déterminer tout de suite le courant alternatif qui en résulte : is = vs/RS  = (1 V)/(1 kΩ) = 1mA. La puissance P que le transformateur délivre à la résistance de charge n’est autre que le produit de la tension du secondaire vs par le courant du secondaire is : P = vs x is = 1V x 1mA = 1mW

Comme on a supposé que le transformateur n’avait pas de pertes, la même puissance P devra être appliquée au primaire du transformateur. Le produit de la tension primaire vp et du courant primaire ip doit donc redonner la valeur P calculée ci-dessus.

Comme nous connaissons déjà la tension vp, il est facile d’en déduire la valeur du courant ip qui est donc :

ip = P/vp  = (1mW)/(2 V) = 0,5mA

Vous remarquerez dès maintenant, que tandis que la tension primaire est le double de celle du secondaire (d’une façon plus générale vp est n fois plus grand que vs, c’est-à-dire vp = vs x n), le courant primaire est cette fois la moitié du courant secondaire (d’une façon plus générale ip est n fois plus petit que is c’est-à-dire ip = is/n)

Supposons maintenant, que l’on enlève le transformateur et qu’on le remplace par une résistance Rp. Le circuit qui alimentait auparavant le transformateur, ne "s’en apercevra pas", si la valeur de Rp est telle que le courant absorbé garde toujours la même valeur ip, c’est-à-dire si la puissance P reste la même que tout à l’heure.

Pour que ip reste le même, il faut que Rp ait pour valeur :

Rp = vp/ip  = (2 V)/(0,5mA ) = 4 kΩ

La valeur de Rp peut être déterminée directement à partir de la valeur de Rs, en tenant compte de ce que vp = vs x n et que ip = is / n. En effet si l’on substitue ces valeurs de vp et ip dans la formule précédente, on obtient :

Rp = vp/ip  = (vs x n)/(is/n) = vs/is x n2

Mais comme vs/is n’est autre que Rs, on a :

Rp = Rs x n2 = 1 kΩ x (2)2 = 1 kΩ x 4 = 4 kΩ

et l’on trouve la même valeur que tout à l’heure.

Ainsi donc, en ce qui concerne le courant alternatif, le transformateur se comporte exactement comme une résistance Rp de valeur n2 fois la valeur de la résistance Rs branchée au primaire. Le schéma équivalent du transformateur, pour le courant alternatif, est celui qui est représenté à la figure 2-c.

Vous remarquerez que la résistance équivalente ramenée au primaire du transformateur dépend et du rapport de transformation, et de la valeur de la résistance de charge branchée au secondaire. Le transformateur opère donc non seulement une transformation des valeurs de tension et de courant, mais aussi une transformation de la valeur de la résistance ; ainsi il peut transformer la valeur de la charge RS en une autre valeur Rp quelconque, plus grande ou plus petite ; il suffira de choisir pour cela un rapport n convenable, entre le nombre des spires du primaire et le nombre de spires au secondaire, et qui sera donné par :

n = √(Rp/Rs)

où les valeurs de Rp et de Rs doivent être exprimées toutes les deux dans les mêmes unités, c’est-à-dire toutes les deux en ohms ou en kΩ.

Nous pouvons maintenant, après cette parenthèse sur le fonctionnement du transformateur, revenir au circuit de la figure 1. Pour la composante continue, le transformateur se comporte comme une simple connexion, c’est-à-dire tout se passe comme si le collecteur était relié directement à la pile : la résistance de charge statique correspond donc à la valeur de la résistance RE d’émetteur soit 0,6kΩ.

Si l’on veut encore avoir le même point de repos que celui des exemples précédents, c’est-à-dire le point A’ de la caractéristique de collecteur correspondant à la tension VCEo = 4 V et au courant de base IBo = 60µA, la droite de charge statique passera par ce point et par le point K qui se trouve sur l’axe horizontal correspondant à la valeur de la tension :

V'CC = VCEo + (ICo x RE) = 4 + (3,33 x 0,6) = 4 + 2 = 6 V (figure 3).

En se rappelant que la droite de charge statique rencontre l’axe horizontal exactement au point correspondant à la valeur de la tension d’alimentation du collecteur on en déduit qu’ayant remplacé la résistance de charge Rc de la figure 4 (Théorique 17) par le primaire du transformateur, on obtient le même point de repos en alimentant le collecteur avec seulement 6V au lieu de 9V.

Ce fait était presque intuitif, si l’on pense que le transformateur ne présente aucune résistance pour la composante continue, c’est-à-dire qu’il n’y a aucune chute de tension aux bornes du primaire. C'est un des premiers avantages du transformateur.

Si nous passons maintenant à la droite de charge dynamique, nous remarquerons que la résistance RE n’intervient pas, puisqu’en parallèle sur celle-ci il y a le condensateur CE, dont la capacité est élevée : il ne reste donc plus que le transformateur qui se comporte comme une résistance Rp. La résistance de charge dynamique correspond donc à cette valeur de Rp.

Pour déterminer la valeur de Rp il suffit de connaître le rapport de transformation et la résistance Rs sur laquelle est fermé le secondaire.

On voit tout de suite que le secondaire est fermé directement sur la résistance d’entrée re du second étage et que dans ce cas, re coïncide avec la résistance d’entrée du transistor TR2 seul.

En effet, en examinant le schéma de la figure 1, on voit que l’extrémité supérieure du secondaire est reliée directement à la base de TR2 ; l’extrémité inférieure est reliée au contraire à l’émetteur par l’intermédiaire une liaison de très faible résistance pour le courant alternatif, et tout se passe, comme s’il y avait une liaison directe entre l’extrémité inférieure du secondaire et l’émetteur.

Aux bornes du secondaire, se trouve donc branchée la jonction base-émetteur de TR2 : tout le courant secondaire is traverse donc cette jonction (c’est-à-dire iB2 = is) et toute la tension du secondaire vs est appliqué entre la base et l’émetteur. Le secondaire peut donc être considéré comme fermé sur la résistance d’entrée rB du transistor seul.

Etant donné que pour le courant continu, le secondaire se comporte comme une simple connexion entre la base de TR2 et le point de jonction de R'2 et R'3 on doit en conclure que sa présence n’influence pas du tout le fonctionnement du circuit de polarisation, ni du point de vue de la stabilisation, ni de celui du point de repos. Celui-ci reste donc le même que dans le cas de la figure 2 (Théorique 17) et rB garde la même valeur calculée précédemment soit 0,75kΩ.

Cette valeur peut être transformée en une valeur Rp quelconque comme nous l’avons vu ci-dessus. Si nous désirons que la résistance de charge en dynamique soit encore de 0,9 kΩ, comme dans le cas de la figure 2 (Théorique 17), il suffira de choisir un transformateur, dont le rapport n soit égal à :

n = √(Rp/Rs ) = √(0,9/0,75) = √1,2 = 1,1 environ

ce qui signifie que si par exemple le secondaire comporte 100 spires, le primaire devra en avoir 100 x 1,1 = 110.

Dans ces conditions, le transistor va travailler avec une charge dynamique de 0,9kΩ et la droite de charge correspondante va passer par le point A’ et le point H (figure 3). Sur la caractéristique de collecteur, nous aurons encore la même droite de charge que celle que nous avions pour le schéma de la figure 2 de la précédente théorique. Il est évident que les résultats des constructions graphiques seront encore ceux que l’on avait à la figure 3 (revoir théorique 17).

Les gains de l’étage seront encore les mêmes que ceux que l’on avait précédemment :

Gi = 50  ;  Gv = 60  ;  Gp = 3.000

Vous voyez immédiatement que la liaison par transformateur ne provoque pas de diminution dans les gains, comme cela avait été le cas dans la liaison par capacité (figure 4 – Théorique 17).

En considérant en effet le gain effectif en courant, et en tenant compte de ce que maintenant, à cause de la présence du transformateur, iB2 (c’est-à-dire is) est n fois plus grand que iC1 (c’est-à-dire ip), on trouve :

G'i = iB2/iB1  = n x iC1/iB1  = n x Gi = 1,1 x 50 = 55

Si l’on veut avoir un courant de commande de TR2 de 20µA crête il suffira de commander TR1 par un courant de base de 20/55 = 0,364µA au lieu de 0,825µA comme dans la précédente leçon.

Le gain effectif en courant a donc plus que doublé (55 au lieu de 24,24). De même le gain effectif en tension a augmenté ; en effet, et en tenant compte de ce que vB2 (c’est-à-dire vs) est maintenant égal à vC1 (c’est-à-dire à vp) divisé par n, on obtient :

G’v = vB2/vB1  = (vC1/n)/vB1  = Gv/n = 60/1,1 = 54,55 environ

c’est-à-dire que le gain en tension est plus du double de celui obtenu dans le cas d’une liaison par capacité (54,55 au lieu de 26,67).

En ce qui concerne le gain effectif en puissance, il est facile de voir qu’il n’est pas sensiblement diminué par rapport au cas de la figure 2 (théorique 17). Il suffit en effet de penser que la puissance de sortie de TR1 n’est autre que la puissance au primaire du transformateur, et que celle-ci est égale à la puissance au secondaire, c’est-à-dire à la puissance d’entrée de TR2 ; ce qui signifie que G'p est obligatoirement égal à Gp, c’est-à-dire égal encore à 3.000.

En comparant les gains obtenus avec un étage du type de celui de la figure 2 – Théorique 17) et ceux obtenus en reliant ce dernier à un autre étage identique soit par une liaison par capacité, (figure 4 – Théorique 17), soit par un couplage inductif (figure 1), on voit tout de suite qu’avec le second type de liaison, on évite les pertes de gain introduites par le premier type, et que l’on a de plus l’avantage de pouvoir utiliser une tension d’alimentation plus faible (6 V dans notre exemple au lieu de 9V).

2 – CHARGE OPTIMUM ET ADAPTATION D’IMPÉDANCE

En examinant la figure 3, on voit comment en augmentant le rapport de transformation (ce qui revient à augmenter Rp), la droite de charge dynamique continue à passer toujours par le point de repos A’, mais devient de plus en plus inclinée sur l’axe horizontal. Ainsi, si l’on passe du rapport n = 1,1 (pour lequel Rp = 0,9kΩ) au rapport n = 1,41 la valeur de Rp devient :

Rp = n2 x Rs = (1,41)2 x 0,75 = 2 x 0,75 = 1,5kΩ

La droite de charge passe alors par le point L de l’axe horizontal correspondant à la valeur de la tension

V''CC = VCEo + (ICEo x Rp) = 4 + (3,33 x 1,5) = 4 + 5 = 9V

On voit que dans ces conditions, le gain en courant est légèrement diminué, par rapport au cas où Rp = 0,9kΩ. En effet, l’excursion I2 du courant de collecteur, correspondant aux points C'’ et E’’ qui délimitent l’excursion du point de fonctionnement sur la droite de charge Rp = 1,5kΩ est plus petite que l’excursion I1 relative aux points C' et E’ et qui correspondaient au cas où Rp = 0,9kΩ.

En examinant les excursions de la tension, on remarquera au contraire, que dans le second cas (Rp = 1,5kΩ) on a un gain de tension plus grand, parce que E2 est plus grand que E1. Si l’on augmente encore la valeur de Rp, le gain en courant continue à diminuer, tandis que le gain en tension continue à augmenter. Le gain en puissance, donné comme étant le produit des deux gains ci-dessus augmente jusqu’à atteindre un maximum puis commence à diminuer, comme on a pu le voir dans la leçon théorique 15.

Ceci veut dire, qu’il existe une position de la droite de charge dynamique pour laquelle le gain en puissance est maximum ; ceci signifie qu’à puissance d’entrée égale, on obtient le maximum de puissance possible du signal de sortie.

Il est évident que pour exploiter au maximum le transistor, il convient de le faire travailler dans ces conditions, c’est-à-dire avec la valeur particulière RCo de la résistance de charge, que l’on obtient avec une valeur bien déterminée du rapport de transformation (no).

Afin de se rendre mieux compte de ce qui se passe lorsque l’on augmente de plus en plus la résistance de charge (ou bien en faisant croître le rapport de transformation en laissant RS constante), il suffit de regarder le graphique de la figure 4.

Les courbes qui y sont rapportées, montrent comment varient les gains de courant, de tension et de puissance quand on augmente la valeur de la résistance de charge. Ces résultats ne sont qu’approchés, parce que dans leur calcul, on a négligé l’influence de la tension du collecteur sur la tension de la base (c’est-à-dire que l’on a considéré que le terme h12e était égal à zéro). Toutefois ces courbes ont l’avantage d’être "universelles", c’est-à-dire qu’elles peuvent servir pour un type quelconque de transistors (transistors BF à faible puissance).

Sur l’échelle horizontale, on a porté les valeurs rcr de la résistance de charge "réduite" (nous verrons sous peu ce que cela signifie) et croissant de la gauche vers la droite. Les trois courbes sont relatives aux gains "réduits", et respectivement de courant (gi), de tension (gv) et de puissance (gp).

Augmenter la valeur de la résistance de charge signifie se déplacer vers la droite sur l’échelle horizontale : en faisant ainsi, on voit que le gain de courant diminue continuellement, tandis que le gain en tension croît sans cesse, tandis que le gain en puissance augmente jusqu’à un certain maximum, puis diminue, comme on l’a déjà dit.

L’utilisation de ce graphique est très simple. Prenons par exemple le cas de la figure 1, et supposons que l’on désire faire Rp = 1,5 kΩ. Pour le point de repos considéré, c’est-à-dire A’ de la figure 3, les paramètres hybrides du transistor sont ceux que l’on a calculés déjà dans la leçon précédente.

h11e = 0,77 kΩ  ;  h21e = 49,5  ;  h22e = 0,068mA/V

La valeur de h12e ne nous intéresse pas, puisque nous avons dit que pour ce graphique on supposait que sa valeur était nulle.

Avant tout, on calcule la valeur de la résistance de charge "réduite" qui est donnée par la formule :

rcr = h22e x Rp = 0,068 x 1,5 = 0,102

En face de cette valeur lue sur l’axe horizontal (ligne en pointillés sur la figure 4), on peut lire les valeurs suivantes des gains "réduits".

gi = 0,91  ;  gv = 0,095  ;  gp = 0,345

Pour avoir les gains véritables du transistor, il suffira d’utiliser les formules suivantes :

Gi = h21e x gi = 49,5 x 0,91 = 45

Gv = h21e/(h11e x h22e) x gv = 49,5/(0,77 x 0,068) x 0,095 = 945 x 0,095 = 89,8

Gp = (h21e)2/(4 x h11e x h22e) x gp = (49,5)2/(4 x 0,77 x 0,068) x 0,345 = 11.700 x 0,345 = 4.040

Cette dernière valeur peut naturellement être déduite des deux précédentes :

en effet Gp = Gi x Gv = 45 x 89,8 = 4.040 environ

En comparant ces valeurs avec celles calculées dans la 15ème leçon théorique (avec Rc = 1,5kΩ) on voit qu’elles sont très voisines entre-elles.

Pour obtenir le maximum de gain en puissance, il suffit donc d’augmenter la valeur de la résistance de charge jusqu’à ce que sa valeur coïncide avec le maximum de la courbe relative à gp de la figure 4, c’est-à-dire jusqu’à obtenir rcr = 1.

Comme on dit que rcr = h22e x Rp, avoir rcr = 1, signifie que la valeur optimum de la résistance de charge doit être égale à 1/h22e, c’est-à-dire qu’elle doit être égale à la valeur de la résistance de sortie du transistor. Dans le cas de l’exemple on aura :

RCo = 1/0,068 = 14,7 kΩ

Les valeurs correspondantes des gains "réduits" qui peuvent être lues sur le graphique sont :  gi = 0,5  ;  gv = 0,5  ;  gp = 1.

En mettant ces valeurs dans les formules précédentes, on trouve :

Gi = 49,5 x 0,5 = 24,75

Gv = 945 x 0,5 = 472, 5

Gp = 11.700 x 1 = 11.700

Le rapport de transformation nécessaire pour obtenir la valeur optimum de la résistance de charge dynamique sera :

no = √(RCo/RS) = et dans le cas de notre exemple :

no = √(14,7/0,75) = √19,6 = 4,43

Avec un tel rapport de transformation, la résistance d’entrée du second étage est "transformée" en une valeur égale à celle de sortie du premier étage. On dit alors, que le transformateur "adapte" entr’elles les impédances de sortie et d’entrée des deux étages. C'est pour cela, que l’on dit que la condition nécessaire pour avoir un gain maximum en puissance est que la sortie du premier étage soit adaptée (par l’intermédiaire du transformateur) à l’entrée du second étage.

3 – VALEUR MAXIMUM DE LA TENSION DE COLLECTEUR -

En examinant la figure 5 (Théorique 17), on voit que la droite de charge dynamique est toujours moins inclinée que la droite de charge statique ; ceci signifie que pendant le fonctionnement (c’est-à-dire pendant une période entière du signal) la valeur de la tension du collecteur (mesurée par rapport à l’émetteur) ne peut jamais atteindre la valeur de la tension d’alimentation Vcc, et ne peut au maximum qu’atteindre la valeur correspondant au point H’.

En effet, si l’on augmente l’amplitude du signal de commande, le point de fonctionnement peut se déplacer au maximum jusqu’au point H’, sui se trouve sur la courbe IB = 0 et qui correspond au blocage du transistor mais ne peut aller au-delà, c’est-à-dire qu’il peut atteindre au maximum 5,2V environ.

Dans le cas d’un couplage par induction, la droite de charge dynamique peut prendre une inclinaison quelconque, comme on l’a vu et en général elle est plus inclinée (sur l’axe horizontal) que la droite de charge statique.

Le point de fonctionnement peut se déplacer alors jusqu’au point L’ (comme par exemple dans le cas de la figure 3 où Rc = 1,5 kΩ) ce qui signifie que la tension instantanée de collecteur peut atteindre des valeurs plus élevées que la tension même d’alimentation. Dans le cas de l’exemple, elle atteint une valeur presque égale à 9 V, tandis que la tension d’alimentation est de 6 V seulement.

Ce fait, bien étrange à première vue, peut s’expliquer assez facilement si l’on regarde le schéma de la figure 5, dans lequel pour plus de simplicité on a dessiné le transformateur un peu différemment par rapport à la figure 1.

En se rappelant que le courant de collecteur IC peut être considéré comme étant la résultante de la composante continue de polarisation ICo et la composante alternative iC qui change de sens à chaque alternance on peut considérer deux cas :

On voit donc que la tension Vp se trouve en série avec la tension VCC de la pile, mais sa polarité est opposée à cette dernière, et ainsi entre le collecteur et la masse, on a une tension VC égale à VCC – Vp.

On en déduit que la tension entre le collecteur et la masse est plus petite que la tension d’alimentation. De plus la tension qu’on lit sur l’échelle horizontale de la Fig. 3 n’est pas VC mais VCE. Pour obtenir VCE de la valeur VC on doit encore soustraire la chute de tension VE qui se produit aux bornes de RE : on a donc VCE = VC – VE.

En conclusion nous dirons, que lorsque la liaison entre les deux étages est du type capacitif, la tension VCE ne peut pas dépasser la valeur de la tension d’alimentation : lorsque la liaison est du type inductif la tension VCE la dépasse presque toujours et peut atteindre dans certains cas, le double de VCC.

On devra donc toujours se rappeler cette possibilité de façon à éviter que pendant le fonctionnement, la tension de collecteur ne puisse dépasser la valeur maximum admise.

Une bonne règle pour le choix de la valeur d’alimentation est la suivante : dans le cas d’une liaison par capacité, la tension d’alimentation ne doit pas être supérieure à la valeur VCEmax (définie dans la 10ème leçon théorique) ; dans le cas d’une liaison par transformateur, la tension d’alimentation ne doit pas dépasser la moitié de VCEmax


RÉPONSES AUX EXERCICES DE RÉVISION SUR LA 17ème LEÇON THÉORIQUE

1 – La résistance d’entrée d’un amplificateur à collecteur commun est approximativement β fois la valeur de la résistance de charge.

2 – C'est l’amplificateur à émetteur commun qui donne le plus grand gain en puissance.

3 – Dans un amplificateur en base commune, c’est le gain en tension qui est le plus élevé, étant donné qu’il n’y a pas de gain en courant.

4 – C'est l’amplificateur en base commune qui présente la plus faible résistance d’entrée.

5 – La résistance d’entrée d’un amplificateur à émetteur commun ne dépend pratiquement pas de la valeur de la résistance de charge.

6 – Le condensateur d’émetteur évite pour le signal l’effet de contre-réaction.

7 – La résistance de charge dynamique a pour valeur RC, et la statique RC + RE.

8 – On appelle couplage capacitif, la liaison par capacité qui relie deux étages. Le couplage inductif signifie que les deux étages sont reliés par un transformateur.

9 – La valeur de la résistance de charge dynamique, dans le cas d’un couplage capacitif est donnée par la mise en parallèle de la résistance de collecteur et de la résistance d’entrée de l’étage suivant.


EXERCICES DE RÉVISION SUR LA 18ème LEÇON THÉORIQUE

1 – Qu’est-ce qu’un transformateur idéal ?

2 – Quelles sont les valeurs de la résistance de charge statique et dynamique dans le cas d’une liaison par transformateur ?

3 – Si l’on garde le même point de repos d’un transistor et si l’on augmente la valeur de la résistance de charge, comment varient les gains en tension et en courant ?

4 – Qu’appelle-t-on charge optimum ?

5 – Est-ce que la tension de collecteur peut dépasser la tension d’alimentation ? Si oui, quand ?

6 – La tension collecteur-émetteur maximum d’un certain transistor est 12 V. On veut utiliser celui-ci en liaison capacitive. Quelle est la valeur maximum de la tension d’alimentation que l’on pourra utiliser ?

7 – Lorsque le gain en puissance est maximum, quelles sont les valeurs des gains réduits en tension et en courant ?

8 – Pourquoi faut-il adapter les impédances dans une liaison par transformateur ?

9 – La résistance de charge au secondaire d’un transformateur est 3,5Ω. Le rapport de transformation est n = 25. Calculer la valeur de la résistance que l’on "voit" aux bornes du primaire ?

Fin de la leçon 18


LECON 19

1 – AMPLIFICATEURS DE PUISSANCE

Si l'on veut obtenir des puissances de sortie comprises entre quelques dixièmes de watts et quelques watts (puissances nécessaires pour les haut-parleurs des récepteurs allant du type portatif au type auto), il faudra utiliser des transistors de dimensions et de performances plus grandes que ceux vus jusqu'à présent.

Les transistors que nous avons vus jusqu'à présent, pouvaient délivrer des puissances de quelques milliwatts, tout au plus suffisantes pour actionner un écouteur de prothèse auditive (amplificateurs pour sourds).

Les transistors de puissance, comme leur nom l'indique, peuvent au contraire délivrer des puissances notables, mais naturellement, ils nécessitent des puissances de commande beaucoup plus grandes : ainsi un étage de puissance est toujours précédé d'un ou plusieurs étages de "tension" (comme on les appelle en général, d'ailleurs bien improprement) du type de ceux que nous avons étudiés jusqu'à maintenant, et qui peuvent délivrer un signal dont la puissance est suffisante pour piloter l'étage final.

Bien que les étages de puissance ne diffèrent pas dans leur principe de fonctionnement, des étages dits de "tension", ils peuvent être réalisés à l'aide de schémas assez différents lorsque les puissances nécessaires deviennent importantes.

Il faut avant tout remarquer qu'un étage de puissance fonctionne toujours avec des signaux forts pour pouvoir exploiter au maximum les possibilités des transistors. En conséquence l'étude d'un tel amplificateur est faite exclusivement d'après les caractéristiques du transistor, et en général par voie graphique plutôt qu'à l'aide des différents paramètres. Ceci est tellement vrai que pour les transistors de puissance, le constructeur ne donne en général pas les paramètres hybrides ou autres, mais seulement le coefficient d'amplification en courant, pour un certain point de fonctionnement.

Le fonctionnement avec signaux de grande amplitude soulève un premier problème auquel nous avons déjà fait allusion et qui est de très grande importance : il s'agit de la distorsion qui doit être réduite obligatoirement au minimum afin d'obtenir une bonne qualité de reproduction des sons.

Un autre problème, qui avait auparavant une importance moindre, et qui est maintenant devenu primordial, est celui de la dissipation de chaleur dans le transistor. Toujours pour la même raison (exploitation au maximum des possibilités du transistor), on arrive à des puissances dissipées sur le collecteur très voisines des valeurs admissibles.

La température de la jonction n'est plus déterminée exclusivement par la température ambiante, comme cela était le cas pour les transistors étudiés jusqu'à maintenant (pour lesquels on admettait en première approximation, que la température de la jonction était la même que celle de l'ambiante), mais est déterminée par les conditions de fonctionnement du transistor.

Il ne suffit plus maintenant de vérifier que la puissance dissipée ne dépasse pas le maximum permis pour un fonctionnement normal, mais il faut encore apporter une attention toute particulière à la stabilité thermique du circuit afin d'éviter que ne se manifeste le phénomène d'autodestruction du transistor. En effet, un accroissement de la température provoqué par le courant qui traverse le transistor, provoque une augmentation du courant de collecteur ; ceci provoque une augmentation de la puissance dissipée et par voie de conséquence un accroissement de la température : ceci provoque une nouvelle augmentation du courant, puis de la température et le phénomène continue jusqu'à ce que le transistor commence à travailler dans des conditions dangereuses, et se détruise irrémédiablement.

Pour éviter un tel inconvénient, il faut prévoir le montage du transistor de manière qu'il puisse dissiper la chaleur qui se développe à l'intérieur.

Dans certains cas, on est même obligé de monter le transistor sur des plaques en cuivre ou en aluminium, ou bien de placer des ailettes métalliques de refroidissement sur le corps même.

Un troisième problème, qui avait été négligé jusqu'à maintenant est celui du rendement, dont l'importance est très grande pour la détermination de la puissance maximum de sortie ainsi que pour la durée de la pile qui alimente le circuit.

Les problèmes de la distorsion et de la dissipation seront examinés dans les cas particuliers des exemples numériques qui vont suivre, et relatifs aux différents types fondamentaux des étages de puissance. Le problème du rendement par contre, mérite au contraire, d'être traité à part.

Il est bon de préciser avant tout, qu'on peut définir deux rendements différents, selon que l'on considère le transistor seul ou l'étage dans son ensemble. Il faut encore faire la distinction entre l'étage final constitué par un seul transistor et l'étage constitué par deux transistors en opposition de phase (push-pull).

1 – 1 RENDEMENT THÉORIQUE DU TRANSISTOR

Le rendement du transistor est défini comme étant le rapport entre la puissance de sortie Po du transistor et la puissance PCo qui est délivrée par la pile d'alimentation. Le rendement est indiqué en général par la lettre grecque η (se lit "éta") : η = Po/PCo .

Ce rapport, comme tous les rendements, est toujours plus petit que 1, ce qui signifie que la puissance délivrée par la pile est toujours plus grande que la puissance fournie à la charge ; la différence entre les deux puissances est celle qui est dissipée en chaleur dans le transistor même.

Il est donc évident que plus la puissance délivrée par le transistor est élevée, plus le rendement est grand et plus faible est la chaleur dissipée dans le transistor.

Dans le cas où l'on n'utilise qu'un seul transistor, il n'y a qu'une seule manière possible de réaliser l'étage final : comme nous allons le voir par la suite, il sera du type stabilisé en température et à liaison par transformateur. Son schéma électrique sera donc identique à celui que nous avons étudié dans la précédente leçon, sauf que maintenant le transformateur de sortie sera couplé à une charge (qui est en général constituée par la bobine mobile du haut-parleur) au lieu d'être couplé comme auparavant, à un autre étage.

Dans ces conditions, le transistor travaille en classe A, ce qui signifie que pendant un cycle entier du signal excitateur appliqué à l'entrée de l'étage, le transistor n'est jamais porté au blocage (si cela se faisait, le signal de sortie serait fortement distordu) ; ainsi le transistor conduit pendant la période entière du signal d'excitation et conduit aussi même lorsqu'il n'y a pas de signal.

Le rendement du transistor est donc nul en l'absence du signal d'excitation, puisque, dans ces conditions, il ne fournit aucune puissance (le signal de sortie est nul, la puissance de sortie est nulle aussi Po = 0), tandis qu'il absorbe une certaine puissance PCo de la pile d'alimentation.

Quand on applique un signal d'excitation, le transistor délivre une certaine puissance, mais continue toujours à absorber la même puissance de la pile ; le rendement n'est plus nul, mais augmente lorsque croît le signal de commande.

On démontre facilement que l'on a le maximum de rendement du transistor lorsque celui-ci délivre la puissance maximum dont il est capable : dans ce cas, le rendement théorique qu'il peut atteindre est de 0,5 (ou si l'on préfère de 50%). Ce rendement n'est jamais tout à fait atteint en pratique.

Ceci signifie, que si l'on dispose d'un transistor fonctionnant en classe A prévu pour fournir une puissance de 1W (par exemple), il va absorber une puissance PCo de 2 W sur la pile. Lorsque le transistor ne délivre pas de puissance (signal d'excitation et signal de sortie nuls), cette puissance de 2 W est entièrement transformée en chaleur dans le transistor ; quand le transistor délivre la puissance Po, la puissance constante PCo (de 2 W) absorbée de la pile se divise en 2 parties ; l'une constitue Po, l'autre (égale à la différence PCo – Po) n'est autre que la puissance PC dissipée dans le transistor. Quand le transistor délivre la puissance maximum de 1W la puissance dissipée dans le transistor est réduite à 1W, c'est-à-dire qu'elle est alors minimum.

On peut donc dire que dans un étage fonctionnant en classe A, le transistor "chauffe moins" quand il fournit la puissance maximum, et qu'il "s'échauffe au maximum", quand il ne délivre pas de puissance du tout., c'est-à-dire lorsqu'il ne travaille pas. En d'autres termes, nous dirons que la puissance maximum qu'un transistor peut délivrer (en théorie bien entendu) est égale à la moitié de la puissance maximum qu'il peut dissiper.

Le défaut d'un étage en classe A avec un seul transistor est la distorsion non négligeable qui apparait lorsque la puissance délivrée est voisine de la puissance maximum.

Une réduction très sensible de cette distorsion peut être obtenue en utilisant deux transistors en opposition de phase (ou "push-pull") fonctionnant encore en classe A. Dans ce cas, le rendement maximum est encore de 0,5 (50%) ; la puissance maximum disponible et la puissance délivrée par la pile, sont maintenant le double de celles que l'on avait avec un seul transistor, c'est-à-dire que le seul avantage d'un montage en opposition de phase, par rapport à un étage avec un seul transistor est celui d'obtenir une forte réduction de la distorsion.

Un avantage notable du point de vue du rendement peut être obtenu avec un étage push-pull en classe B.

Pour faire travailler les deux transistors en classe B, il faut les polariser presque à l'interdiction (ou au "cut-off", terme anglais) de façon que l'un conduise (et amplifie) seulement que pendant les alternances positives du signal d'excitation, et que l'autre n'amplifie que pendant les alternances négatives.

De cette façon, on voit tout de suite que le rendement peut être plus élevé que dans les cas précédents, parce que en l'absence du signal les deux transistors sont au cut-off, qu'ils ne délivrent pas de puissance mais aussi qu'ils n'en absorbent pas de la pile.

Ainsi donc, la pile ne fournit de puissance que lorsque les transistors délivrent eux-mêmes de la puissance. On démontre que le rendement maximum théorique des transistors est de 0,785 (78,5%), et qu'il est atteint quand les transistors délivrent la puissance maximum. Ceci signifie que si les deux transistors en classe B, délivrent une puissance maximum de 1 W, la pile ne délivre qu'une puissance de 1/0,785 = 1,275W au lieu de 2W comme dans le cas du montage en classe A.

L'augmentation du rendement, qui se traduit en pratique par une durée plus grande de la pile, a un autre avantage d'une grande importance : pour une même puissance de sortie, on obtient une puissance dissipée dans les transistors plus faible, ou, ce qui revient au même, à égalité de puissance dissipée dans les transistors, on peut obtenir une puissance de sortie plus grande. On démontre que la puissance de sortie maximum que l'on peut obtenir avec une paire de transistors montés en classe B, est égale à près de cinq fois (ou plus exactement à 4,93 fois) la puissance maximum que peut dissiper chacun d'eux.

Ainsi par exemple, si l'on utilise des transistors qui peuvent dissiper chacun une puissance maximum de collecteur PCmax de 1watt, la puissance maximum de sortie Po max que l'on peut obtenir avec un montage push-pull classe B est de 4,93Watts

Tout ce que nous venons de voir a été résumé dans le tableau suivant :

Type de l'étage FinalRendement théoriquePuissance de sortie
maximum (Pomax)
Classe A0,5 (50%)0,5 x Pcmax
Push-Pull classe A0,5 (50%)Pcmax
Push-Pull classe B0,785 (78,5%)4,93 x Pcmax

En examinant les valeurs reportées ci-dessus, nous pourrons noter, qu'en utilisant un type donné de transistor de transistor de puissance, dans un montage push-pull classe A, nous obtenons une puissance de sortie maximum qui est à peine le double de celle que l'on peut obtenir avec un seul transistor, Si nous choisissons au contraire un montage push-pull classe B, la puissance de sortie maximum est presque 10 fois celle que nous avons avec un seul transistor.

Ces considérations, bien que basées sur des valeurs théoriques, qui ne sont jamais atteintes en pratique, permettent de conclure qu'un montage push-pull classe B est beaucoup plus avantageux qu'un montage en classe A. C'est surtout pour cette raison, qu'en pratique on n'utilise que très rarement le push-pull classe A, et nous n'en parlerons pas dans les prochaines leçons.

1 – 2 RENDEMENT RÉEL DU TRANSISTOR ET DE L'ÉTAGE

Les valeurs de rendement que nous venons de voir sont dites "théoriques" en ce sens qu'elles ne sont jamais atteintes en pratique ; ce n'est qu'en montage base à la masse que ces rendements se rapprochent des valeurs théoriques.

En effet, si l'on considère un étage en classe A à un seul transistor (le raisonnement suivant est valable aussi pour les étages push-pull en classe A ou B) on voit d'après la figure 1-a (qui représente le fonctionnement sur les caractéristiques de collecteur pour le montage en base commune) que le point de fonctionnement peut atteindre effectivement les points H et K d'intersection de la droite de charge avec les 2 axes.

Ceci est dû au fait que les caractéristiques de collecteur chutent à gauche de l'axe vertical et parce que la caractéristique correspondant au courant de commande nul (IE = 0) se confond pratiquement avec l'axe horizontal.

Dans ces conditions, si l'on fait varier le courant de collecteur de zéro à ICmax, la tension de collecteur passe de la valeur maximum VCE max à une valeur minimum VCEmin qui est zéro ; l'excursion de la tension de collecteur atteint ainsi la valeur maximum possible qui est égale à VCEmax.

Si l'on considère maintenant un étage en classe A à un seul transistor mais en montage émetteur à la masse, on voit sur la figure 1-b, qui en représente le fonctionnement, que le point de fonctionnement ne peut plus atteindre les points H et K, à cause de la nature même des caractéristiques de collecteur, puisque ces dernières chutent maintenant à droite de l'axe vertical, et que celle qui correspond à IB = 0 ne coïncide plus exactement avec l'axe horizontal ; l'excursion du point de fonctionnement est limitée à C et E.

Dans le cas des transistors de puissance, le point E est assez voisin du point H et on peut admettre que le point de fonctionnement atteint le point H.

Le point C est par contre nettement différent du point K ; ceci signifie que la tension VCEmin n'atteint pas la valeur zéro, mais ne peut atteindre au plus que la tension VK et qui est de l'ordre de 0,5 V.

En conclusion, l'amplitude crête à crête du signal est inférieure à VCEmax.

A égalité de tension VCEo et de courant de repos ICo, la puissance que fournit la pile reste la même dans les deux cas tandis que le signal de sortie (et la puissance de sortie Po) est évidemment plus faible dans le cas de la figure 1-b, puisque l'excursion de VC est plus petite. Pour cette raison, le rendement du transistor est encore plus faible en montage émetteur commun.

Si l'on suppose par exemple que la tension d'alimentation VCC est de 9 V et que Vk est de 0,5 V, le rendement est réduit dans le rapport

(VCC-Vk)/VCC  = (9-0,5)/9 = 8,5/9 = 0,944 environ

Pour le montage en émetteur commun, nous aurons donc les rendements maxima suivants :

Ces valeurs sont cependant des valeurs maxima des rendements réels que l'on peut obtenir en pratique, quand les transistors sont montés en émetteur commun.

La puissance de sortie Po délivrée par le transistor (ou par les deux transistors) ne pourra jamais être totalement utilisée dans la charge (haut-parleur) à cause de la présence du transformateur de sortie, qui en pratique n'est jamais "idéal", et aussi à cause de la résistance d'émetteur placée pour la stabilisation thermique.

Le rendement de l'étage est par conséquent toujours plus faible que le rendement calculé pour le transistor seul, à cause des pertes inévitables dans le transformateur et dans la résistance d'émetteur.

Le rendement de l'ensemble est indiqué par ηs et est défini comme étant le rapport entre la puissance Pu effectivement délivrée à la charge (puissance utile) et la puissance PCC que l'étage absorbe sur la pile :

ηs = Pu/PCC

Comme nous le verrons sur des exemples numériques, le rendement de l'étage peut-être notablement inférieur au rendement du transistor lorsque l'on utilise des transformateurs de sortie ayant des enroulements assez résistants et une résistance d'émetteur élevée.

2 – AMPLIFICATEUR DE PUISSANCE CLASSE A

Le schéma type d'un étage de sortie, ou de puissance est indiqué à la figure 2. Comme on peut le voir, il s'agit d'un étage à émetteur commun avec stabilisation thermique, et couplé à la charge (ou au haut-parleur) par l'intermédiaire d'un transformateur. La charge est représentée sur la figure 2 par la résistance RS dont la valeur est égale à l'impédance du haut-parleur, valeur en général indiquée par le constructeur du H.P.

Le transistor choisi dans notre exemple est un SFT 125. Ce transistor peut être utilisé dans les amplificateurs de faible puissance, comme par exemple ceux utilisés dans les récepteurs portables.

Les valeurs limites sont les suivantes :

Nous en déduirons, selon ce qui a été dit dans la leçon théorique 10, que la puissance maximum PCmax que l'on peut dissiper sur le collecteur afin que la température de la jonction ne dépasse pas la valeur maximum permise est : (pour une température ambiante de 45° C)

PCmax = (T(j max) - Ta)/K = (75-45)/0,09 = 30/0,09 = 333mW

Pour plus de sécurité, nous arrondirons cette valeur à 300mW

Nous avons maintenant tous les éléments, pour tracer sur les caractéristiques la courbe de dissipation maximum, la droite de charge et le point de fonctionnement.

2 – 1 DROITE DE CHARGE

Pour tracer les droites de charge statique et dynamique, il faut encore tenir compte de la résistance des enroulements du transformateur de sortie : le transformateur réel va donc se présenter comme sur la figure 3-a. On peut donc considérer le transformateur réel, comme un transformateur idéal (ayant le même rapport de transformation) mais qui aurait en série avec les enroulements primaire et secondaire, les résistances rp et rs ; ces résistances devront avoir pour valeur la résistance des enroulements du transformateur réel.

En se rappelant ce qui a été dit dans la leçon précédente, on peut déduire immédiatement les schémas équivalents du transformateur réel, pour le courant continu et pour le courant alternatif, quand le secondaire est fermé sur la charge RS.

En observant la figure 3-a, on voit que pour le courant continu, le transformateur se comporte comme une résistance de valeur rp (figure 3-b).

En ce qui concerne le courant alternatif, il se comporte comme une résistance RC (figure 3-c) constituée par la mise en série de trois résistances : Rp égale à RS x n2 qui représente la charge ramenée au primaire (de la même façon que pour un transformateur idéal) ; rs x n2 qui représente la résistance du secondaire ramenée au primaire ; rp qui est la résistance du primaire.

Supposons que rp = 10Ω, la valeur de la résistance de charge statique qui résulte du schéma de la figure 2 sera :

Rst = rp + RE = 10 + 47 = 57Ω

En alimentant le circuit par une tension de 9V, la droite de charge statique passera par le point de l'axe horizontal correspondant à VCC = 9V et par le point de l'axe vertical correspondant à un courant :

ICC = VCC/Rst  = (9 V)/57 = 0,158 A = 158mA

Sur cette droite, on fixera le point de fonctionnement A' (figure 4). Pour exploiter au maximum le transistor, le point A' sera placé le plus près possible de la courbe de dissipation maximum. On pourrait à la limite le placer exactement sur cette courbe, auquel cas, la puissance dissipée sur le collecteur serait égale au maximum permis de 300mW. Mais il faut tenir compte de ce que les caractéristiques sont tracées pour une température ambiante de 25° C, et qu'elles sont susceptibles de se déplacer vers le haut quand la température augmente avec comme risque de déplacer le point A' au-dessus de la courbe de dissipation maximum.

Afin d'éviter cet inconvénient qui aurait comme conséquence la destruction définitive du transistor, il est bon de placer le point A' un peu au-dessous de la courbe de dissipation maximum, comme sur la figure 4.

Dans ces conditions, la tension et le courant de repos sont respectivement VCEo = 7 V et ICo = 35mA ; la puissance dissipée sur le collecteur est :

PC = VCEo x ICo = 7 x 35 = 245mW

c'est-à-dire un peu inférieure à PCmax = 300mW

Il faut maintenant tracer la droite dynamique. Pour obtenir une puissance de sortie maximum, il faut faire passer la droite de charge dynamique par le point E' qui se trouve sur l'axe horizontal en correspondance avec la tension V'CC = 2 VCEo – Vk = (2 x 7) – 0,5 = 13,5 V (figure 4).

A une telle droite de charge correspond une résistance de charge dynamique égale à :

Rd = (V'CC - VCEo)/ICo  = (13,5 -7)/35 = 6,5/35 = 0,1857kΩ = 185,7Ω

En examinant le schéma de la figure 2, on voit que la résistance dynamique correspond à la seule résistance RC présentée par le transformateur car RE est court-circuitée par le condensateur CE de 1.000 pF.

Pour obtenir cette valeur de Rd avec une charge au secondaire Rs de 5,5Ω, une résistance rs de l'enroulement secondaire de 1,5Ω et une résistance rp de 10Ω, le transformateur de sortie devra avoir un rapport de transformation n de :

n = √((Rd-rp)/(Rs+rs )) = √((185,7-10)/(5,5+1,5)) = √(175,7/7) = √25,1 = 5,01

Cette valeur pourra être arrondie, dans la pratique à 5, ce qui veut dire que le primaire devra avoir 5 fois plus de spires que le secondaire.

Avec la droite de charge dynamique, on voit que la tension maximum atteinte par le collecteur pendant le fonctionnement est 13,5V (point E') et que le courant maximum de collecteur est 70mA (point C').

Ces valeurs ne dépassent pas les valeurs maxima indiquées précédemment (20V et 300mA) ; il n'y a donc aucun danger pour le transistor.

2 – 2 PUISSANCE ET RENDEMENT

Pour déterminer la puissance maximum Po, que le transistor peut délivrer, il suffit d'examiner la figure 4 :

VCEmax = V'CC = 13,5 V et VCEmin = Vk = 0,5 V

On détermine alors les valeurs maximum et minimum du courant de collecteur :

ICmax = 70mA et ICmin = 0mA

La puissance maximum que peut délivrer le transistor est donc :

Po = ((VCEmax-VCEmin ) x (ICmax-ICmin))/8 = ((13,5-0,5) x (70-0))/8 = (13 x 70)/8 = 910/8  = 114mW

Le transistor absorbe de la pile une puissance PCo, qu'il délivre ou non lui-même de la puissance. Au repos, PCo = 245mW. Le rendement η est donc :

η = Po/PCo  = 114/245 = 0,465 (soit 46,5% au lieu de 50%)

La puissance Pu fournie à la charge est plus petite que Po délivrée par le transistor à cause des pertes dans le transformateur dûes à la résistance des enroulements. Pu est donnée par la formule :

Pu = Po x Rp/Rd

où Rp est la résistance de charge Rs ramenée au primaire et qui est égale à RC x n2 et Rd la résistance de charge dynamique tracée sur les caractéristiques. On devra évidemment exprimer ces deux résistances dans les mêmes unités, c'est-à-dire en Ω ou en kΩ.

Dans notre exemple Rs = 5,5 et n = 5. D'où :

Rp = 5,5 x (5)2 = 5,5 x 25 = 137,5

Comme Rd = 185,7Ω on aura :

Pu = Po x Rp/Rd  = 114 x 137,5/185,7 = 114 x 0,74 = 84,4mW

On peut maintenant calculer le rendement de l'étage en divisant Pu par la puissance PCC fournie par la pile. Cette dernière peut être facilement calculée en sachant que la pile a une tension VCC de 9 V et qu'elle délivre un courant égal à celui qui est absorbé par l'étage final soit ICo ; on a donc :

PCC  = VCC x ICo = 9 x 35 = 315mW

Le rendement de l'étage est donc :

ηt = Pu/PCC = 84,4/315 = 0,268 (soit 26,8%)

On voit donc ainsi que le rendement pratique d'un étage est beaucoup plus faible que le rendement théorique du transistor seul.

2 – 3 CIRCUITS DE POLARISTION ET GAINS

Pour que le point de repos vienne en A' (figure 4) le courant de polarisation de la base devra être de 0,35mA comme on peut le voir sur la figure.

Cette valeur est obtenue avec le circuit de polarisation de la figure 2, avec RE = 47Ω, R2 = 2,2 kΩ et R3 = 680Ω.

Pour être certain qu'il n'y a pas de danger d'autodestruction du transistor quand celui-ci fonctionne à la température maximum prévue (Tamb = 45° C), il reste encore à contrôler que le coefficient de stabilité S du circuit reste inférieur à la valeur Smax (donnée par la formule ci-dessus et valable pour des transistors de puissance au germanium quelconque).

Smax = 450/(VCC x K x ICBo)

où VCC est la tension d'alimentation de la pile en volts, K est la résistance thermique du transistor exprimée en °C/mW et ICBo est la valeur maximum que peut atteindre le courant résiduel du collecteur à la température de 25°C et exprimée en µA.

Dans le cas de l'exemple on trouve avec VCC = 9V, K = 0,09°C/mW et ICBo = 20µA.

Smax = (450)/(9 x 0,09 x 20) = 450/16,2 = 27,8 environ

Le coefficient de stabilité du circuit est calculé à l'aide de la formule vue en son temps, avec RE = 47Ω, RB = 500Ω (RB est donné, rappelons-le, par la mise en parallèle de R2 et R3) et β = 100.

S = (RE+ RB)/(RE + RB/β ) = (17 + 500)/(47 + 500/100) = 547/52 = 10,5

Cette valeur de S est nettement inférieure à Smax et nous sommes ainsi sûrs que le circuit est stable du point de vue thermique et qu'il n'y a pas de danger d'autodestruction. Si S n'avait pas été inférieur à Smax, on aurait été obligé de diminuer les valeurs de R2 et R3, ou bien augmenter RE de façon à réduire la valeur de S.

Pour compléter l'étude de l'amplificateur pris comme exemple, il faut encore déterminer les valeurs du courant de commande et de la résistance d'entrée, de façon à pouvoir calculer l'étage précédent (c'est-à-dire le préamplificateur ou l'étage driver).

Dans ce but, on trace dans le deuxième quadrant, la caractéristique mutuelle de courant, relative à la droite de charge dynamique du 1er quadrant (pour Rd = 185,7Ω – figure 4).

On trouve ainsi, en procédant à la construction inverse de celle de la leçon précédente, la forme du courant de base dont l'excursion est de 0,75mA.

La résistance d'entrée sera calculée si l'on connait l'excursion correspondante de la tension de base. On trouve :

rB = (VBEmax - VBEmin)/(IBmax - IBmin) = (280-80)/(0,75-0) = 200/0,75 = 266Ω

A remarquer que le résultat est exprimé en ohms, car la tension l'est en mV et le courant en mA.

Pour obtenir la puissance de sortie maximum, l'étage de la figure 2 a besoin d'un courant de commande de 0,75mA d'excursion ; d'autre part, sa résistance moyenne d'entrée est de 266Ω. On peut encore dire que pour délivrer la puissance de sortie maximum l'étage nécessite une puissance de commande (ou puissance d'entrée) Pe de :

Pe = (VBEmax - VBEmin) x (IBmax - IBmin))/8 = ((280 - 80) x (0,75 - 0))/8 = (200 x 0,75)/8 = 18,75 µW

Pe est exprimé en µW, car la tension est donnée en mV et le courant e nmA. Cette puissance devra être fournie par l'étage driver dont la charge est précisément la résistance d'entrée calculée ci-dessus.

Si nous voulons maintenant déterminer le gain en puissance de l'étage considéré, il suffira de faire le rapport entre la puissance Pu et la puissance Pe, toutes les deux exprimées dans les mêmes unités de mesure, par exemple en µW. On trouve, avec Pu = 84,4mW = 84.400 µW.

Gp = Pu/Pe  = 84.400/18,75 = 4.500 environ

Il faut encore remarquer, que ce n'est pas le gain maximum que l'on peut obtenir avec le transistor considéré, parce que, répétons-le la valeur de la droite de charge dynamique a été choisie pour obtenir la puissance de sortie maximum et non pas le gain maximum. Si l'on avait voulu obtenir le gain de puissance maximum, on aurait procédé comme avec les amplificateurs de tension, c'est-à-dire que l'on aurait choisi une valeur de Rd égale à la valeur de la résistance de sortie du transistor.

On voit facilement dans l'exemple, que la valeur de Rd aurait été beaucoup plus grande que la valeur choisie : la puissance de sortie aurait été alors nettement réduite. Dans ces conditions, le transistor de puissance n'aurait pas été bien utilisé : on préfère donc renoncer au maximum de gain en faveur du maximum de puissance de sortie.

L'inconvénient qui en découle est qu'il faut dépense une puissance plus grande pour piloter le transistor final ; mais comme cette puissance est toujours très faible par rapport à la puissance de sortie (un peu plus de 18µW dans le cas de l'exemple), il vaut mieux dépenser quelques dizaines de µW de plus que de renoncer à des centaines de mW de puissance de sortie.

2 – 4 DISTORSIONS

Dans les constructions de la figure 4, nous sommes partis d'une tension et d'un courant de collecteur parfaitement sinusoïdaux comme on les désire en général dans la pratique.

En observant la figure, nous voyons que pour obtenir un courant de collecteur sinusoïdal, c'est-à-dire sans distorsions, le courant de commande de la base devra avoir une allure légèrement différente d'une sinusoïde.

En effet, les deux alternances du courant de base ne sont pas égales : l'une a une amplitude de 0,35mA, l'autre de 0,4mA.

Pour obtenir un courant de collecteur (et donc une tension de collecteur) sans distorsions, il est donc nécessaire de piloter l'étage par un courant de base "convenablement distordu". Ceci n'est pas possible en général ; nous en concluerons qu'en pilotant l'étage par un courant sinusoïdal, le courant de collecteur sera légèrement distordu comme nous l'avons déjà vu dans la 15ème leçon théorique, parce que la caractéristique mutuelle de courant du deuxième quadrant n'est pas rectiligne, mais incurvée dans sa partie supérieure.

En pilotant l'étage avec un courant de base sinusoïdal dont les deux alternances ont une amplitude de 0,35mA, nous oyons sur la figure 5-a que les alternances du courant de collecteur ne sont pas égales : l'alternance supérieure a une amplitude de 30mA, l'autre de 35mA.

Si l'on pilote au contraire l'étage par une tension sinusoïdale avec une amplitude de 60mV, on obtient la construction de la figure 5-b, où le courant de collecteur est encore distordu ; maintenant au contraire l'alternance négative est de 23mA, et l'alternance positive de 35mA.

Dans ce dernier cas (commande en tension), le courant de base est déjà distordu du fait de la courbure de la caractéristique d'entrée (courbe du troisième quadrant) ce qui fait que l'alternance inférieure est plus petite que l'alternance supérieure. L'alternance supérieure est de 0,40mA, l'inférieure de 0,21mA seulement.

En comparant les formes du courant de base de la figure 5-b, avec celles de la figure 4, on voit que l'on peut faire en sorte d'exploiter la courbure de la caractéristique d'entrée ; ainsi, si l'alternance inférieure du courant de base est de 0,35mA au lieu de 0,21mA, les deux alternances du courant de collecteur auront même amplitude, c'est-à-dire précisément 35mA.

En d'autres termes, la distorsion introduite par la courbure de la caractéristique d'entrée, et celle introduite par la caractéristique mutuelle peuvent se compenser mutuellement, de telle façon qu'en commandant l'étage par une tension sinusoïdale, les deux alternances du courant de collecteur gardent encore la même amplitude. Ceci ne signifie pas que l'on élimine complètement la distorsion du courant de collecteur, mais qu'on la réduit notablement, c'est-à-dire pratiquement au minimum.

Pour comprendre comment il est possible de compenser les deux distorsions introduites, reprenons l'examen de la forme du courant de base de la figure 4, c'est-à-dire celle qui est nécessaire pour obtenir un courant de collecteur avec les deux alternances égales, et procédons comme indiqué à la figure 6.

Partons des points A'' et C'', et au lieu de tracer des droites horizontales pour déterminer les valeurs correspondantes de la tension de base et sa forme relative (tracée en pointillés) traçons des droites inclinées de telle manière que le point R soit exactement au milieu de E''S, c'est-à-dire que l'on ait : RE'' = RS.

Dans le cas de notre exemple nous trouvons :

Pour voir quelle est la signification physique de cette droite inclinée il suffit de comparer le troisième quadrant (figure 6) et le premier quadrant de la figure 4. Dans ce dernier, sont reportés la tension et le courant de collecteur et on voit qu'une droite inclinée qui coupe les deux axes représente une résistance de charge, c'est-à-dire une résistance qui dans le schéma électrique est placée en série avec le collecteur.

Dans le cas du troisième quadrant, sont reportés la tension et le courant de base ; on en déduit qu'une droite inclinée qui coupe les deux axes comme sur la figure 6 représente une résistance qui dans le circuit électrique se trouve en série dans la base.

En conclusion, la construction graphique de la figure 6 a la signification suivante : on peut réduire au minimum la distorsion du courant (et de la tension) de sortie en plaçant en série avec la base une résistance RBo comme indiqué dans le schéma de la figure 7.

On peut déterminer la valeur d'une telle résistance en faisant le rapport entre la tension et le courant lus aux intersections de la droite et des axes.

Dans le cas de l'exemple, on peut prendre les points d'intersection S et T ; en ces points, on lit 1.480mV (point S) et 0,925mA (point T). La valeur de RBo sera en Ω si la tension est exprimée en mV et le courant en mA.

RBo = 1.480/0,925 = 1.600Ω

La tension sinusoïdale qui doit être appliquée à l'entrée de l'étage à travers la résistance RBo doit, naturellement avoir 700mV d'amplitude (figure 6).

La réduction de la distorsion ainsi obtenue doit être payée par la nécessité de piloter l'étage par une tension d'amplitude plus grande. En effet, on avait besoin avant, d'une excursion totale de la tension de base de 200mV, maintenant, on a besoin d'une excursion de

VBEmax – VBEmin = 1.480 – 80 = 1.400mV c'est-à-dire 7 fois plus.

La puissance nécessaire pour piloter le transistor est aussi 7 fois plus grande maintenant :

Pe = (VBEmax - VBEmin ) x (IBmax - IBmin))/8 = ((1.480 - 80) x (0,75 - 0))/8 = (1.400 x 0,75)/8 = 1.050/8  = 131,25µW

au lieu de 18,75 µW comme calculé précédemment. Il est quand même profitable de dépenser un peu plus de puissance pour commander le transistor (on n'a besoin au fond que de quelques dizaines de µW en plus) et réduire ainsi notablement la distorsion du signal de sortie.

Il faut encore remarquer que lorsque l'étage final est commandé par un étage driver, amplificateur de tension comme c'est presque toujours le cas, la résistance RBo peut être constituée totalement ou en partie par la résistance de sortie même de l'étage pilote. On fait alors en sorte que cette résistance de sortie ait précisément la valeur de RBo nécessaire à la réduction de la distorsion de l'étage final.

Dans l'exemple de l'étage final classe A considéré aujourd'hui, le couplage entre celui-ci et l'étage pilote, peut être indifféremment capacitif ou inductif, selon les schémas vus dans la précédente leçon, étant donné les faibles puissances nécessaires pour la commande.

Dans le cas de l'étage de puissance de sortie plus grande, il est au contraire plus avantageux d'utiliser un transformateur de liaison.


RÉPONSES AUX EXERCICES DE RÉVISION SUR LA 18ème LEÇON THÉORIQUE

1 – Un transformateur idéal équivaut à un conducteur sans résistance pour le courant continu et une résistance à n2 fois la valeur de la résistance sur laquelle est fermé le secondaire pour le courant alternatif.

2 – Dans le cas d'une liaison par transformateur, la résistance de charge en statique a pour valeur RE et en dynamique Rp = n2 x Rs.

3 – Si l'on augmente la résistance de charge en dynamique, le gain en tension augmente, tandis que celui en courant diminue.

4 – On appelle charge optimum celle qui donne le gain maximum en puissance.

5 – Oui, dans le cas d'une liaison par transformateur.

6 – La liaison étant capacitive, on pourra prendre une tension d'alimentation au plus égale à 12 V.

7 – Lorsque le gain en puissance est maximum, on trouve sur les courbes universelles, que le gain réduit en tension est égal au gain réduit en courant gi = gv = 0,5

8 – Si l'on désire obtenir un gain maximum en puissance, on doit chercher à adapter les impédances dans une liaison par transformateur.

9 – La résistance au primaire est :

Rp = n2 x Rs = (25)2 x 3,5 = 2.200Ω environ.


EXERCICES DE RÉVISION SUR LA 19ème LEÇON THÉORIQUE

1 – Comment définit-on le rendement d'un transistor ?

2 – Quelles sont les valeurs maxima théoriques du rendement d'un transistor ?

3 – Les transistors d'un étage de sortie "chauffent-ils" plus quand l'étage est excité, ou quand il ne l'est pas ?

4 – Quelle est la puissance maximum que peut délivrer un transistor en classe A ou bien deux transistors en classe B, en fonction de la puissance maximum que peut dissiper chacun d'eux ?

5 – Pourquoi le rendement d'un étage est-il toujours inférieur à celui du transistor seul ?

6 – Comment peut-on représenter un transformateur réel ?

7 – Quel est le schéma équivalent d'un transformateur réel, vis-à-vis du courant continu ?

8 – Comment peut-on écarter le danger d'autodestruction d'un transistor de puissance ?

9 – Comment peut-on diminuer au minimum les distorsions d'un étage en classe A constitué par un seul transistor ?

Fin de la leçon 19


LECON 20

1 – AMPLIFICATEURS DE PUISSANCE PUSH-PULL

Les amplificateurs de puissance en push-pull sont constitués par 2 transistors qui amplifient 2 signaux parfaitement égaux, mais en opposition de phase (c’est-à-dire déphasés de 180°). Ceci signifie, comme nous le verrons mieux par la suite, que les 2 signaux appliqués sur les bases des 2 transistors sont à tout instant, d’amplitude égale, mais tandis que l’un est positif par rapport à la masse, l’autre est négatif, ou inversement.

Le système est donc parfaitement symétrique, ou plutôt, équilibré par rapport à la masse ; par rapport à un système non équilibré, comme le sont tous les étages qui n’utilisent qu’un seul transistor, on obtient un avantage sensible en ce qui concerne la distorsion du signal de sortie.

En effet, à cause de la symétrie du système (comme nous allons le voir sous peu avec les constructions graphiques relatives à un étage push-pull) le signal de sortie est "symétrique", c’est-à-dire que les 2 alternances du signal de sortie sont parfaitement égales, non seulement en amplitude mais aussi en forme.

Comme nous l’avons vu dans la dernière leçon, ce résultat (égalisation des 2 alternances du signal de sortie) est difficilement obtenu avec un seul transistor, à cause de la courbure de la caractéristique d’entrée ; ce n’est que dans certaines conditions de commande du transistor que l’on peut obtenir 2 alternances d’égale amplitude.

Dans le cas d’un étage push-pull, ce résultat est obtenu automatiquement avec une réduction importante de la distorsion. L’étage push-pull est donc par sa nature même, un circuit de "plus haute qualité" que celui qui n’a qu’un transistor.

Il a en plus d’autres avantages en ce qui concerne le rendement et la puissance absorbée sur la pile d’alimentation, lorsqu’il s’agit d’un étage fonctionnant en classe B.

Comme le fonctionnement d’un étage push-pull classe B est très différent des étages vus jusqu’à présent, il est bon d’étudier son comportement ainsi que les propriétés d’un tel circuit, avant de passer à un exemple numérique avec les constructions graphiques sur les caractéristiques.

Nous allons voir 3 types différents d’étage push-pull classe B : 2 de ceux-ci sont normalement utilisés en pratique, soit dans les récepteurs dont la puissance de sortie n’est pas inférieure à une centaine de milliwatts, soit dans les amplificateurs de puissance plus grande. Le 3ème type sera étudié surtout pour son intérêt théorique.

1 – 1 ÉTAGE DE SORTIE EN CLASSE B AVEC TRANSFORMATEUR DE SORTIE

A la figure 1, est indiqué le schéma de principe d’un étage de puissance push-pull classe B avec transformateur de sortie ; les émetteurs des 2 transistors sont directement reliés à la masse (pour simplifier nous ne considérons pour le moment aucun circuit de stabilisation thermique).

La prise centrale du secondaire du transformateur d’entrée est directement reliée à la masse, tandis que les enroulements sont branchés directement sur les bases ; les collecteurs sont alimentés par une seule pile, à travers les 2 enroulements P1 et P2 des primaires du transformateur de sortie.

Le secondaire S de ce transformateur alimente la bobine mobile Bm du haut-parleur qui constitue la charge de l’étage.

La pile d’alimentation est reliée entre la masse et la prise centrale du transformateur de sortie, comme on le voit sur la figure 1.

Si les transistors sont du type PNP, le plus de la pile sera relié à la masse (cas de la figure 1). Dans le cas de transistors NPN, le schéma reste identique mais la pile devra alors avoir son pôle moins relié à la masse.

Le schéma de la figure 1 est relatif au montage en émetteur commun, car c’est celui qui est le plus utilisé dans les récepteurs radio ; tout ce qui sera dit dans les paragraphes suivants reste évidemment valable s’il s’agit du montage base à la masse, compte tenu des quelques différences déjà examinées plusieurs fois, existant entre les 2 types de montage.

Pour étudier le fonctionnement du schéma de la figure 1, nous allons tout d’abord considérer qu’aucun signal n’est appliqué pour le moment au primaire P du transformateur d’entrée Te, c’est-à-dire que l’étage est actuellement au repos. On voit que, dans ces conditions, les 2 transistors ne conduisent pas : en effet les 2 émetteurs sont reliés directement à la masse, ainsi que les 2 bases à travers la faible résistance des enroulements S1 et S2 du secondaire du transformateur d’entrée Te.

De cette manière, les jonctions base-émetteur ne sont pas polarisées, aucun courant ne traverse la liaison de base, et par conséquent, le courant du collecteur est nul. Ainsi, en l’absence d’un signal, les 2 transistors ne conduisent pas (ils sont bloqués) et n’absorbent donc aucun courant de la pile.

Lorsque l’on applique un signal au primaire P de Te, le comportement du circuit est différent selon qu’il s’agit d’une ou de l’autre alternance ; il faut donc considérer séparément le fonctionnement pour l’alternance positive, puis pour l’alternance négative.

Supposons tout d’abord que l’on applique au primaire de Te l’alternance négative du signal (qui par simplification est supposé être sinusoïdal mais le raisonnement reste valable pour une forme quelconque du signal). Dans ces conditions, le primaire P est parcouru par le courant ie avec le sens indiqué sur la figure 2a.

Par induction, le courant ie induit dans les 2 enroulements secondaires S1 et S2, deux f-é-m (force électromotrice) VB1 et VB2 (d’où les courants iB1 et iB2 ).

Étant donné la disposition des circuits, la f-é-m VB1 a le sens de la flèche de l’émetteur de TR1, tandis que la f-é-m VB2 a le sens opposé à la flèche de l’émetteur de TR2.

Si l’on se rappelle la signification de la flèche de l’émetteur (celle-ci indique le sens dans lequel la jonction base-émetteur conduit), on voit que tandis que VB1 a le sens de conduction de la jonction base émetteur de TR1, VB2 a le sens opposé à la conduction de la jonction base émetteur de TR2.

Le résultat est le suivant : le courant iB2 ne peut pas circuler ; tout se passe comme si TR2 n’avait pas de courant de commande ; TR2 reste donc bloqué pendant toute l’alternance négative du signal de commande appliqué au primaire P. Le courant de collecteur iC2 reste donc nul.

Le contraire se produit pour TR1 : dans sa liaison de base, circule le courant iB1 , et le circuit du collecteur va être traversé par le courant iC1 , qui aura même forme que iB1 et sera β fois plus grand que celui-ci (β coefficient d’amplification du courant).

Le courant iC1 circule dans la moitié P1 du transformateur de sortie Tu avec le sens indiqué sur la figure 2a. Dans le secondaire et dans la charge RC circulera le courant d’utilisation iu avec comme sens, celui de la figure 2a.

Si l’on considère maintenant l’alternance suivante, on trouve que le courant ie a le sens opposé à celui de tout à l’heure (figure 2b). Les courants au secondaire s’inversent, et on démontre facilement que c’est maintenant le transistor TR2 qui conduit, tandis que TR1 se trouve bloqué.

Dans le primaire du transformateur Tu, va circuler le courant iC2 avec le sens indiqué et le courant induit au secondaire aura donc le sens de la figure 2b.

En conclusion nous dirons, que pendant les alternances négatives, TR1 conduit seul, et pendant les alternances positives, TR2 seul.

Le transformateur d’entrée fait donc une "séparation" entre les 2 alternances : la première seule est amplifiée par TR1, la seconde par TR2.

Le transformateur de sortie fait l’opération inverse : il "recompose" les 2 alternances et délivre un signal complet à la charge d’utilisation.

Pour les alternances négatives de ie, tout se passe comme si le circuit était composé de S1, TR1 et P1 ; pour les alternances positives, le circuit est composé de S2, TR2 et P2 ; comme le secondaire de Tu est commun aux circuits des 2 collecteurs, le courant dans la charge est induit alternativement, une fois par iC1 qui traverse P1, une fois par iC2 qui traverse P2. On obtient ainsi la recombinaison du signal.

Comme la pile d’alimentation est commune aux circuits des 2 collecteurs, elle fournira le courant, alternativement à l’un puis à l’autre, et comme on peut le voir sur la figure 2, les courants iC1 et iC2 ont le même sens dans la pile. Il nous reste à vérifier que le circuit en classe B n’absorbe du courant que lorsqu’on lui applique un signal. Supposons que le courant ie est sinusoïdal et que les alternances positives sont vers le bas, tandis que les alternances négatives vers le haut (ce n’est qu’une convention). Le courant ie est représenté sur la figure 3a (2 périodes complètes). Les alternances négatives de ie sont donc comprises dans les intervalles 1,2 et 3,4.

Le courant iB1 n’existera donc que dans les intervalles 1,2 et 3,4 (figure 3b) ; le courant iC1 , n’existera donc que dans les mêmes intervalles de temps, mais son amplitude sera beaucoup plus grande (figure 3d).

Dans les intervalles de temps 2,3 et 4,5, c’est-à-dire pour les alternances positives de ie, nous aurons au contraire le courant iB2 et iC2 (figures 3c et 3e). Les 2 se recombinant dans le transformateur de sortie, donnent lieu au courant iu (figure 3f).

En nous rappelant que par convention nous avons admis que les alternances négatives étaient vers le haut, les courants de base et de collecteur sont donc vers le haut, puisqu’il s’agit de transistors PNP et qu’ils sont alimentés par des tensions négatives.

Le courant d’utilisation sera aussi alternativement positif et négatif comme le courant ie.

A la figure 3g est reportée la forme du courant iCC délivré par la pile : comme cette dernière alimente en même temps les 2 transistors, il est évident que l’allure du courant sera la résultante des courants des 2 collecteurs ; le courant iCC sera constitué par une série d’alternances négatives de même forme et amplitude que les courants iC1 et iC2 .

La puissance fournie par la pile peut être déterminée facilement en faisant le produit de la tension VCC de la pile par la valeur moyenne ICC du courant iCC de la figure 3g. En tenant compte que iCC est constitué par des alternances toujours de même sens, dont l’amplitude est iCp, la valeur de ICC est donnée par la formule suivante (valable uniquement dans le cas d’un signal sinusoïdal comme c’est le cas) :

ICC = (2 x iCp)/π = iCp/1,57

La puissance fournie par la pile est donc :

PCC = (VCC x iCp)/1,57

et sera exprimée en milliwatts, si la tension est en volts et le courant en mA.

1 – 2 ÉTAGE DE SORTIE CLASSE B SANS TRANSFORMATEUR DE SORTIE

Dans le cas des amplificateurs push-pull, le rôle du transformateur de sortie est double. Il sert tout d’abord à transformer la faible valeur de l’impédance de la bobine mobile du H.P. en une impédance optimum pour que le transistor puisse délivrer la puissance maximum. D’autre part, il sert à recombiner les 2 alternances du signal.

Comme nous l’avons vu dans la précédente leçon, le transformateur introduit toujours des pertes, dûes principalement à la résistance des enroulements. Il est donc logique de chercher une solution pour l’éliminer et alimenter directement la bobine du haut-parleur.

Pour ce faire, on utilise des H.P. de type spécial, ayant une grande impédance de bobine mobile, de façon à pouvoir les brancher directement dans le circuit des collecteurs. En second lieu, il est indispensable que la bobine mobile soit pourvue d’une prise centrale pour obtenir la recombinaison des 2 alternances.

Avec un tel type de H.P., on obtient le schéma de la figure 4, identique à celui de la figure 1, avec la seule différence que c’est maintenant le H.P. qui est directement relié sur les collecteurs.

L’avantage de l’élimination du transformateur de sortie se traduit pour une même paire de transistors, par un gain de la puissance de sortie de l’ordre de 15%, ce qui signifie en d’autres termes, un meilleur rendement de l’étage. Par contre, on a l’inconvénient d’avoir un haut-parleur plus cher (nombre de spires plus grand pour avoir une impédance plus élevée, et prise centrale).

D’autre part, en regardant le schéma de la figure 4, on voit que le courant de TR1 ne traverse seulement que la moitié gauche de la bobine mobile, et le courant de TR2, la moitié droite. Comme les 2 transistors travaillent alternativement, chaque enroulement de la bobine travaille seulement la moitié du temps, ce qui indique une mauvaise utilisation de celle-ci.

La bobine mobile est donc 2 fois plus lourde qu’une bobine normale de même impédance (2 fois plus de spires) le H.P est donc moins sensible et moins capable de répondre aux variations rapides du courant B.F.

Ces inconvénients (mauvaise réponses aux fréquences basses et prix élevé) font que l’avantage que l’on avait obtenu par la suppression du transformateur de sortie est en grande partie perdu. Le schéma de la figure 4 est donc rarement utilisé.

Le schéma de la figure 5 est par contre beaucoup plus utilisé. Il permet en effet d’éliminer le transformateur de sortie et en même temps d’utiliser un H.P. à simple bobine mobile.

Dans ce cas on peut dire que les 2 transistors sont branchés en série, puisque le collecteur de TR2 est relié directement à l’émetteur de TR1. L’alimentation est réalisée par 2 piles identiques, branchées elles aussi en série et dont les extrémités sont reliées, l’une au collecteur de TR1, l’autre à l’émetteur de TR2. On peut utiliser aussi une pile unique qui comporte une prise centrale. Le H.P. dont la bobine mobile est à haute impédance (et plus précisément, d’impédance égale à la valeur de la résistance de charge requise pour le type de transistors utilisés), est relié entre le point de jonction de l’émetteur de TR1 et du collecteur de TR2 et le point de jonction des 2 piles.

La commande des bases est faite par 2 enroulements secondaires séparés au lieu que ce soit un seul enroulement secondaire à prise médiane. Le fonctionnement du circuit est le suivant :

Supposons que pendant l’alternance négative du signal d’entrée, le courant ie dans le primaire ait le sens de la flèche en trait plein (figure 5). Le sens de la f-é-m (force électromotrice) dans les 2 secondaires sera celui indiqué par une flèche en trait continu (même sens que celui du courant).

On voit donc, que pour le transistor TR1, le sens est celui de la flèche de l’émetteur, ce qui signifie que TR1 conduit et que la bobine mobile est traversée par le courant iC1 qui va de droite vers la gauche ; ce courant est fourni par la pile P1.

Le transistor TR2 est par contre bloqué à cause du croisement des connexions du secondaire S2 entre base et émetteur de TR2. La tension de commande a donc un sens inverse de celui de la flèche de l’émetteur ; aucun courant ne circule dans TR2. La bobine mobile du H.P. est donc traversée par le seul courant iC1 .

Pendant l’alternance positive, les courants primaires et tensions secondaires ont le sens indiqué par les flèches en pointillés (opposé au sens précédent). TR2 conduit donc, tandis que TR1 est bloqué. La bobine mobile est donc traversée par le courant iC2 qui, grâce à la disposition du circuit, est fourni par la pile P2 et se dirige de la gauche vers la droite.

Dans ce cas encore, les 2 transistors travaillent alternativement pendant les alternances positives et négatives. Comme leurs courants de collecteur traversent la bobine mobile en sens inverse, on obtient automatiquement la recombinaison des 2 alternances, sans avoir à utiliser un transformateur de sortie ou un H.P. à prise médiane.

À remarquer encore, que même maintenant, si on n’applique pas de signal à l’entrée, les 2 transistors restent bloqués et que dans ces conditions, la pile ne débite pas, tout comme précédemment.

Le circuit de la figure 5 a donc des avantages sensibles par rapport aux 2 autres. En effet, par rapport au schéma de la figure 1, il n’y a pas de transformateur de sortie : donc pour un même type de transistors, on obtient une puissance sensiblement plus grande, et une distorsion moindre, puisque en tous les cas, on n’a pas celles introduites par le transformateur de sortie. On a, en outre, une bande passante plus grande (on verra par la suite ce que cela signifie), toujours pour la même raison, qu’il n’y a pas de limitations dûes au transformateur. En conclusion, le circuit de la figure 5 est de plus grande fidélité que celui de la figure 1.

Par rapport au schéma de la figure 4, le circuit de la figure 5 a en outre l’avantage d’utiliser un H.P. moins coûteux et ayant des qualités électriques et acoustiques meilleures.

Par contre, les inconvénients du circuit de la figure 5 sont les suivants : l’alimentation doit être faite par 2 piles et le transformateur d’entrée doit avoir 2 enroulements secondaires séparés au lieu d’avoir une seule prise centrale. Ces inconvénients sont toutefois minimes, tant du point de vue électrique, que du point de vue économique.

1 – 3 ÉTAGE FINAL EN CLASSE B, SANS TRANSFORMATEUR D’ENTRÉE NI DE SORTIE

Outre l’élimination du transformateur de sortie, on peut encore supprimer à l’aide d’un montage approprié, le transformateur d’entrée, en rendant le circuit extrêmement simple et de grande qualité.

Pour pouvoir éliminer le transformateur d’entrée, il faut utiliser 2 transistors ayant mêmes caractéristiques, mais du type complémentaires, c’est-à-dire un de type PNP et l’autre du type NPN, en exploitant le fait qu’ils travaillent avec des tensions de polarité inverse.

Le schéma est indiqué à la figure 6 : le transistor TR1 du type PNP est alimenté par la pile P1 dont la borne moins est reliée au collecteur du transistor ; le transistor TR2 est du type NPN et est au contraire alimenté par la pile P2, dont la borne plus est reliée au collecteur de ce dernier. La bobine mobile Bm du H.P. est branchée entre le point A de jonction entre les émetteurs des 2 transistors et le point B de jonction des 2 piles ; elle est ainsi traversée par les courants de collecteur des 2 transistors.

Le schéma est donc parfaitement analogue à celui de la figure 5, sauf en ce qui concerne l’inversion de branchement de TR2 (collecteur permuté avec l’émetteur), car celui-ci étant du type NPN nécessite une tension positive sur son collecteur au lieu d’une tension négative.

Les 2 bases sont reliées ensemble puis aux émetteurs par l’intermédiaire de la résistance RB ; ainsi, en l’absence du signal de commande, les 2 transistors se trouvent bloqués et aucun courant ne circule dans les collecteurs, tout comme dans les cas précédents.

Le signal de commande est appliqué, par l’intermédiaire du condensateur C, à l’ensemble des 2 bases ; comme les transistors sont complémentaires, l’un conduit pendant les alternances négatives, l’autre seulement pendant les alternances positives, sans nécessité de transformateur d’entrée, indispensable dans les schémas précédents.

Pendant l’alternance négative du signal de commande, le courant ie circule de la borne E2 vers la borne E1 : ce courant a le sens indiqué par la flèche en trait continu (figure 6). Ce courant peut traverser la jonction émetteur-base de TR1 car il a même sens que la flèche de l’émetteur de TR1. Par contre il ne peut circuler dans la jonction émetteur-base de TR2 car il a le sens opposé à celui de la flèche d’émetteur de ce transistor.

Ainsi, pendant les alternances négatives du signal, seul TR1 conduira et la bobine mobile du H.P. sera parcourue par un courant iC1 allant de la droite vers la gauche et fourni par la pile P1.

Pendant l’alternance positive, le courant ie circule de la borne E1 vers la borne E2. Maintenant, c’est le transistor TR1 qui est bloqué et TR2 conduit (flèches en pointillés). La bobine mobile est traversée par le courant iC2 allant de la gauche vers la droite et délivré par la pile P2.

Cette solution extrêmement élégante, est seulement d’un intérêt théorique, car la difficulté de réaliser en pratique 2 transistors de types complémentaires et de caractéristiques identiques est presque insurmontable. En effet, si les 2 transistors n’ont pas des caractéristiques parfaitement identiques, les courants des 2 collecteurs ne seront pas de même amplitude et le signal sera distordu.

Ce qui vient d’être dit reste valable en ce qui concerne les circuits où les 2 transistors sont du même type. Les transistors destinés à être montés dans des circuits push-pull sont en général apairés par le fabricant, de façon à réduire les inévitables différences (dûes aux tolérances de production) entre les caractéristiques des 2 transistors.

2 – EXEMPLE D’AMPLIFICATEUR EN CLASSE B

Comme nous l’avons fait dans la dernière leçon, lors de l’étude d’un amplificateur de puissance classe A, nous allons examiner maintenant le schéma d’un amplificateur classe B sur lequel nous ferons un exemple numérique. Pour simplifier, nous ne considérerons que l’amplificateur avec transformateur de sortie, car c’est celui qui est le plus largement diffusé dans la pratique. À partir de celui-ci, il sera facile de passer à n’importe quel autre type étudié dans cette leçon.

Le schéma en question est dessiné à la figure 7. Le schéma est identique à celui de la figure 1 à part les différences suivantes : le haut-parleur est remplacé par sa résistance équivalente RS, supposé être de 5Ω. On a mis en évidence dans le transformateur de sortie, la résistance de l’enroulement primaire (rp = 2Ω pour chaque demi-primaire) et la résistance du secondaire (rs = 0,6Ω) ; le primaire du transformateur d’entrée est alimenté par l’intermédiaire de la résistance R de valeur suffisamment élevée, par rapport à la résistance d’entrée de chacun des transistors, de façon que le circuit puisse être considéré comme étant commandé en courant (leçon théorique 15). Le réglage du courant de commande est fait à l’aide du potentiomètre Pe.

Pour l’instant, nous ne faisons aucune supposition sur la valeur du rapport de transformation des 2 transformateurs, et nous négligeons pour simplifier les résistances des enroulements de Te.

2 – 1 DROITE DE CHARGE

Étant donné que dans les étages push-pull classe B, les 2 transistors ne travaillent jamais simultanément, mais chacun à son tour nous pouvons faire l’étude complète de l’amplificateur en ne considérant qu’un seul transistor, celui qui conduit naturellement.

Il faut, avant tout, déterminer le point de repos A’ sur les caractéristiques, c’est-à-dire le point qui représente les conditions où se trouve le transistor lorsqu’aucun signal n’est appliqué à son entrée. Comme dans ces conditions, le courant de collecteur est nul (en effet, le transistor se trouve polarisé à l’interdiction), le point de repos se trouve sur l’axe horizontal de la caractéristique du 1er quadrant de la figure 8. À noter que pour ce transistor, et en général pour tous les transistors de puissance, cet axe coïncide aussi avec la caractéristique relative à un courant de base nul (-IB = 0).

Nous voyons donc que le point de repos se trouve en correspondance avec la valeur de la tension d’alimentation VCC (point A’ de la figure 8) puisque le courant de collecteur ICo est nul et qu’il n’y a donc aucune chute de tension dans le circuit des collecteurs, et que toute la tension de la pile se trouve appliquée entre le collecteur et l’émetteur du transistor. Nous avons donc VCEo1 = VCC = 9V.

Ainsi, lorsqu’il s’agit de déterminer le point de repos des transistors dans un étage classe B, il est inutile de tracer la droite de charge statique (qui dans le cas de l’exemple, aurait eu une pente correspondant à la valeur rp = 2Ω), puisque dans les conditions de repos, le courant de collecteur est nul.

Après avoir déterminé le point de repos, nous pouvons maintenant tracer la droite de charge dynamique. Pour obtenir la puissance de sortie maximum, sans dépasser la valeur limite du courant collecteur ICmax (qui pour un type donné est par exemple de 300 mA), nous considérons sur l’axe vertical le point D’ correspondant à cette valeur maximum du courant, et nous tracerons la droite de charge qui passe par les points A’ et D’ (figure 8).

La résistance de charge dynamique aura donc pour valeur :

Rd = VCC/ICmax = (9 V)/(300 mA) = 0,03kΩ = 30Ω

D’après le schéma de la figure 7, nous voyons que la résistance dynamique Rd se confond avec la résistance Rc présentée par la moitié de l’enroulement primaire du transformateur de sortie, car nous ne voyons aucune autre résistance, ni dans le circuit du collecteur, ni dans celui de l’émetteur.

En appliquant alors la formule donnée dans la leçon précédente, nous pouvons déterminer la valeur du rapport de transformation nu de Tu, pour que Rd ait bien la valeur de 30Ω. Nous obtenons :

nu = √((Rd - rp)/(Rs + rs )) = √((30-2)/(5+0,6)) = √(28/5,6) = √5 = 2,24

Ce qui signifie que le nombre de spires de la moitié de l’enroulement primaire doit être 2,24 fois le nombre de spires du secondaire.

La résistance de charge Rs ramenée au primaire aura donc pour valeur :

Rp = Rs x nu2 = 5 x (2,24)2 = 5 x 5 = 25Ω

2 – 2 PUISSANCE ET RENDEMENT

En procédant comme à l’habitude avec la droite de charge dynamique on passe du 1er quadrant au second, pour obtenir la caractéristique dynamique mutuelle et ainsi à la détermination des formes du courant et de la tension du collecteur, lorsque la base vient à être commandée par un courant sinusoïdal.

En examinant le 1er quadrant de la figure 8, on voit que le point de fonctionnement, en se déplaçant sur la droite de charge dynamique, peut atteindre au maximum le point C’ correspondant à la tension minimum possible en pratique du collecteur, qui dans le cas de l’exemple est de 0,6 V (tension Vk définie dans la leçon précédente) et au courant maximum de 280mA. En pratique le point de fonctionnement n’atteint jamais le point D’ qui correspond à la valeur limite ICmax de 300mA ; c’est une garantie supplémentaire de sécurité par le transistor.

Par le point C’ passe la caractéristique ayant comme paramètre IB = 4mA ce qui signifie que pour amener le point de fonctionnement en C’, le courant de commande devra atteindre la valeur crête de 4 mA.

Supposons donc, qu’en réglant correctement le potentiomètre Pe du schéma de la figure 7, nous faisions circuler dans le circuit de base de TR1, un courant sinusoïdal de commande iBp = 4mA de valeur crête. La sinusoïde qui représente ce courant de base peut donc être dessinée comme d’habitude, en prenant comme axe, la verticale passant par le point de repos A du 2ème quadrant. La construction graphique de la forme du courant et de la tension de collecteur sera faite en tenant compte de ce que pendant la 1ère alternance (0 à 6), le point de fonctionnement se déplace de A à C et revient en A : le courant de base passe donc de zéro, à la valeur maximum IB1 max = 4mA pour revenir à zéro.

Pendant la seconde alternance (6 à 12), le courant de base ne peut pas descendre en dessous de zéro et le point de fonctionnement reste constamment en A.

Comme nous pouvons le voir d’après la figure 8, le courant de collecteur ne circule que pendant la pseudo période 0 – 6, et est égal à zéro, pendant toute la pseudo période 6 – 12. Nous avons tracé sur la même ligne, la forme de la tension de collecteur, mais seulement pendant la pseudo période où le transistor conduit. Nous verrons par la suite ce qu’il en advient de VCE pendant l’autre alternance.

A cause d’une légère courbure de la caractéristique dynamique mutuelle la forme du courant de collecteur est légèrement différente d’une sinusoïde. En effet, si nous regardons aux points 1 et 5, nous voyons que si le courant de base est bien égal à la moitié de la valeur crête (I'B1 = 2 mA en effet), le courant de collecteur par contre a pour valeur I'C1 = 180 mA, c’est-à-dire sensiblement plus grand que la moitié de la valeur maximum ICmax = 280 mA. Or nous savons que les formules permettant de calculer la puissance de sortie Po1 du transistor, la puissance PCC1 fournie par la pile, la puissance PC1 dissipée dans le transistor et le rendement, ne sont valables que dans le cas d’un courant de collecteur parfaitement sinusoïdal.

Toutefois, comme la différence avec la forme sinusoïdale est encore assez faible, ces formules resteront valables avec une bonne approximation.

Nous supposerons encore que les courants des 2 transistors sont parfaitement égaux (ce qui suppose que les 2 transistors sont parfaitement identiques, chose qui en pratique n’est vraie qu’en première approximation). On a pris l’habitude, dans ces calculs, de ne considérer qu’un seul transistor, c’est-à-dire pendant une alternance seulement. Pour cette raison, les formules que nous avons vues précédemment ne sont plus valables. Les formules que je vais vous indiquer ci-dessous en découlent ; pour obtenir la puissance relative à l’étage complet, ces valeurs devront être multipliées par 2.

En supposant donc que le courant de collecteur est sinusoïdal, la puissance maximum que peut délivrer le transistor sera donc obtenue lorsque le point de fonctionnement atteint son excursion maximum, c’est-à-dire la valeur maximum de 280 mA. Cette puissance peut donc être calculée à l’aide de la formule suivante :

Po1 = (iCp2 x Rd)/4 avec :

Dans le cas de notre exemple, nous avons :

iCp = IC1max = 28 mA = 0,28 A et Rd = 30Ω

Po1max = ((0,28)2 x 30)/4 = (0,0784 x 30)/4 = 2,352/4 = 0,588 W

La puissance de sortie maximum pour chacun des transistors du schéma de la figure 7 est donc de 588mW ; la puissance délivrée par les 2 transistors est donc :

Pomax = 2 x Po1max = 2 x 0,588 = 1,176W

La puissance moyenne que chaque transistor absorbe sur la pile est 0,802W environ (voir calculs page 6)

La puissance moyenne absorbée par les deux transistors est :

PCCmax = 2 x PCC1max = 2 x 0,802 = 1,604W

Le rendement de chaque transistor (égal au rendement de l’ensemble) peut maintenant être calculé en faisant le rapport entre Po1max et PCC1max (ou entre Pomax et PCCmax) :

η = Pomax/PCCmax = 1,176/1,604 = 0,733 soit 73,3%

Dans la détermination de la droite de charge, nous avons tenu compte de la valeur maximum du courant de collecteur admise pour le type de transistor utilisé, et nous avons fait en sorte que jamais pendant le fonctionnement, cette valeur ne soit dépassée. Par contre, nous n’avons pas encore vérifié si la puissance dissipée dans le transistor ne dépassait la valeur limite supposée de 300 mW. Faisons maintenant cette vérification.

On a tracé sur les caractéristiques du 1er quadrant de la figure 8, l’hyperbole d’isopuissance, c’est-à-dire celle qui correspond à la dissipation maximum admise de 300 mW. Or, nous voyons que la droite de charge dynamique passe au-dessus de cette hyperbole ; nous serions donc tentés de croire que ce transistor travaille dans des conditions dangereuses.

En examinant de plus près le fonctionnement du transistor, nous verrons que les choses ne sont pas tout à fait ainsi. En effet, le point de fonctionnement n’est pas continuellement dans la "zone interdite" c’est-à-dire dans la région comprise entre les points Q et R, mais il ne la traverse que pendant l’alternance où le transistor conduit, puis, pendant la seconde alternance, le point revient en A’ (IC nul) et le transistor se "repose".

A cause de l’inertie thermique du transistor, sa jonction ne peut pas s’échauffer instantanément pendant l’alternance de conduction et se refroidir immédiatement pendant l’alternance de repos. La température va donc se maintenir à une valeur presque constante. L’échauffement de la jonction n’est donc pas dû à la puissance maximum dissipée, pendant l’alternance de conduction, mais à la puissance moyenne dissipée pendant une période.

Le calcul de la puissance moyenne PC dissipée sur le collecteur est immédiat, si l’on se rappelle ce qui s’est dit dans la leçon précédente. En effet, si la pile fournit la puissance PCC et qu’une partie Po de celle-ci seulement constitue le signal de sortie, il est évident que la différence n’est autre que la puissance PC dissipée sur les collecteurs des 2 transistors.

Pour le transistor TR1 seul, on trouve que la puissance dissipée sur son collecteur, dans les conditions où le signal de sortie est maximum, sera :

PC1 = PCC1 – Po1 = 802 – 588 = 214mW

Il faut encore remarquer que la valeur de PC1 dépend de l’amplitude du signal de sortie et qu’elle n’atteint pas sa valeur maximum lorsque le courant de collecteur est lui-même maximum. Pour vérifier que la dissipation sur le collecteur ne dépasse en aucun cas la valeur autorisée de 300mW, il reste encore à calculer PC1 non pas dans le cas où le signal de sortie est maximum, mais dans le cas où PC1 atteint elle-même sa valeur maximum.

Dans ce but, le graphique de la figure 9 montre, comment varient les différentes puissances (PCC1, Po1, PC1) et le rendement η du transistor, lorsque l’amplitude iCp du courant de collecteur augmente de 0 à la valeur maximum de 280 mA.

Nous voyons qu’en augmentant iCp, la puissance PCC1 fournie par la pile au transistor croît régulièrement (on dit en langage mathématique qu’elle croît linéairement) ; que la puissance Po1 fournie par TR1 augmente d’abord lentement, puis de plus en plus vite (elle suit une loi "parabolique").

La puissance PC1 dissipée sur le collecteur (donnée pour chaque valeur de iCp par la différence entre les valeurs de PCC1 et Po1) augmente d’abord puis diminue ; elle atteint sa valeur maximum pour un courant iCpo de 191mA.

On démontre que cette valeur maximum est donnée par la formule :

PC1max = (ICmax x VCC)/π2 = (ICmax x VCC)/9,87

où VCC est la tension de la pile exprimée en volts. PC1max sera exprimée en watts ou en mW, selon que ICmax est donné en A ou en mA.

Dans le cas de l’exemple, on a : VCC = 9V et ICmax = 300 mA

on a donc :

PC1max = (300 x 9)/9,87 = 2.700/9,87 = 273mW

Cette valeur est donc plus faible que la valeur autorisée de 300mW et il n’existe donc pas de danger de destruction des transistors par échauffement. On démontre encore que la valeur iCpo pour laquelle PC1 est maximum est donnée par la formule :

ICpo = 2/π x ICmax = 0,636 x ICmax = 0,636 x 300 = 191mA

A propos de la figure 9, il est bon encore de faire quelques remarques d’ordre général, valables non seulement pour le cas de l’exemple, mais aussi pour n’importe quel amplificateur de puissance de classe B.

En examinant la figure 9, nous voyons que lorsque l’amplitude du courant de collecteur est égale à la valeur iCpo (191mA dans l’exemple), non seulement la puissance PC1 dissipée sur le collecteur atteint sa valeur maximum, mais elle est alors égale à la puissance Po1 fournie par le transistor comme puissance du signal de sortie. On a donc :

PC1 = Po1

Par conséquent, et pour cette condition du fonctionnement, la puissance PCC1 que le transistor absorbe sur la pile est égale à 2 fois la puissance Po1 et le rendement η est alors de 50%.

Nous pouvons dire en d’autres termes, que la dissipation est maximum sur le collecteur, lorsque le rendement du transistor atteint 50%.

Le rendement du transistor augmente avec iCp et atteint la valeur maximum de 73,3% lorsque iCp = 280 mA suivant la construction de la figure 8. Pour cette valeur de iCp nous retrouvons évidemment sur le graphique de la figure 9, les valeurs PCC1max = 802mW et Po1max = 588mW calculées précédemment.

Il est intéressant de noter, que pour iCp = 300mA (c’est-à-dire si le point C’ de la figure 8, pouvait arriver en D’ correspondant au courant ICmax = VCC/Rd ) le rendement est égal à la valeur théorique de 78,5%.

Le graphique de la figure 9 peut servir à calculer n’importe quel amplificateur classe B, par utilisation de l’échelle "réduite" de l’amplitude du courant de collecteur qui est :

k = iCp/ICmax.

L’échelle verticale porte les valeurs "réduites" des 3 puissances considérées correspondant à un seul des 2 transistors, c’est-à-dire la puissance "réduite" PCC1 que le transistor absorbe sur la pile, la puissance "réduite" Po1 délivrée par le transistor et la puissance (toujours "réduite") PC1 dissipée sur le collecteur. Pour revenir aux puissances réelles, à partir des puissances "réduites", il suffit de multiplier ces dernières par un facteur "h" donné par le produit VCC x ICmax. En exprimant la tension d’alimentation VCC de la pile en volts, les puissances réelles seront données en mW ou en W, selon que ICmax (qui représente toujours le courant maximum de collecteur admis pour le type du transistor considéré) est exprimé en mA ou en A.

Les valeurs maxima des puissances "réduites" et du rendement, qui sont celles qui nous intéressent en pratique, sont lues en correspondance de la valeur k’ donnée par la formule :

k’ = (VCC-Vk)/VCC

où VCC et Vk sont exprimées en volts. La puissance maximum "réduite" dissipée sur le collecteur se trouve toujours en correspondance de la valeur ko = 0,636.

Supposons par exemple que nous avons 2 transistors pour lesquels on admet un courant maximum de collecteur ICmax = 1,4A. La tension du coude Vk = 0,6V et la tension d’alimentation VCC = 6V.

Avec ces données, nous trouvons :

Sur le graphique de la figure 9, nous trouvons pour k’ = 0,9

Les valeurs réelles des puissances relatives à un seul des 2 transistors seront :

Les valeurs relatives à l’étage complet seront le double des valeurs précédentes.

2 – 3 PUISSANCE DE SORTIE ET RENDEMENT DE L’ÉTAGE

Comme pour les amplificateurs de puissance classe A, ceux en classe B ne peuvent délivrer à la charge (H.P. en général) toute la puissance Po fournie par les transistors à cause des pertes plus ou moins grandes mais inévitables dans le transformateur de sortie.

Si l’on considère un seul transistor ainsi que la moitié du primaire du transformateur de sortie qui lui correspond, la puissance que délivre le transistor au primaire est Po1, tandis que la puissance Pu1 qui effectivement est appliquée à la charge, peut être déterminée de la même façon que pour un étage classe A.

Pu1 = Po1 x Rp/Rd

Dans le cas de l’exemple nous avons Po1max = 588mW. La résistance dynamique Rd = 30Ω ; la résistance secondaire ramenée au primaire Rp = 25Ω.

Pu1max = 588 x 25/30 = 588 x 0,833 = 490mW.

La puissance maximum fournie à la charge par les 2 transistors est donc le double.

Pmax = 2 x Pu1max = 2 x 490 = 980mW = 0,98W

Nous pouvons encore calculer le rendement de l’étage, en faisant comme pour l’étage classe A, le rapport entre la puissance de sortie Pu et la puissance PCC absorbée par les 2 transistors sur la pile.

Dans l’exemple nous avions PCCmax = 1,604W

η = Pumax/PCCmax = 0,98/1,604 = 0,6109 = 61,09%

Ce chiffre est sensiblement plus faible que le rendement η du transistor. Il nous reste encore, avant de terminer l’étude sur les étages finals push-pull classe B, à examiner les caractéristiques composites, les distorsions et les circuits de polarisation. Nous verrons ceci dans la prochaine leçon.


RÉPONSES AUX EXERCICES DE RÉVISION SUR LA 19ème LEÇON THÉORIQUE

1 – Le rendement d’un transistor est défini comme étant le rapport entre la puissance Po délivrée par celui-ci et la puissance PCo que ce dernier absorbe sur la pile d’alimentation.

2 – Les valeurs maxima théoriques du rendement d’un transistor sont 0,5 (soit 50%) et 0,785 (soit 78,5%) dans le cas d’un fonctionnement en classe A ou B respectivement.

3 - Les transistors d’un étage de sortie en classe A "chauffent" plus lorsque l’étage n’est pas excité ; par contre s’il s’agit d’un étage classe B, ils "chauffent" plus lorsque ce dernier travaille.

4 – La puissance maximum qu’un transistor en classe A peut fournir est égale à la moitié de la puissance maximum qu’il peut dissiper. S’il s’agit de 2 transistors en classe B au contraire, la puissance maximum qu’ils peuvent fournir est égale à 4,83 fois la puissance maximum que chacun d’eux peut dissiper.

5 – Le rendement d’un étage est toujours plus faible que celui des transistors, à cause des pertes qui se produisent dans le transformateur de sortie et dans la résistance de l’émetteur.

6 – Un transformateur réel peut être représenté par un transformateur idéal qui aurait en série avec chacun de ses enroulements, une résistance de valeur égale à la valeur de la résistance même de ses enroulements.

7 – Le schéma équivalent d’un transformateur réel, en ce qui concerne le courant continu, est constitué par une résistance dont la valeur est celle du primaire du transformateur.

8 – Pour éviter l’autodestruction d’un transistor de puissance, il faut que le coefficient de stabilité de son circuit de polarisation soit inférieur à une certaine valeur maximum tolérée.

9 – Pour réduire au minimum les distorsions d’un étage classe A à un seul transistor, il faut placer en série avec la base du transistor une résistance de valeur convenable.


EXERCICES DE RÉVISION SUR LA 20ème LEÇON THÉORIQUE

1 – Combien doit-on utiliser de transistors dans un étage push-pull ? Comment doivent être ces transistors ?

2 – Pourquoi les 2 alternances d’un signal de sortie dans un étage push-pull sont-elles toujours parfaitement identiques ?

3 – Comment sont polarisés les transistors dans un étage classe B ?

4 – Quelle est la puissance absorbée sur la pile par l’étage classe B, lorsqu’aucun signal n’est appliqué à son entrée ?

5 – Lorsque l’on applique un signal à l’entrée, est-ce que les 2 transistors conduisent simultanément ?

6 – Est-ce que l’on peut supprimer le transformateur de sortie ?

7 – Pourquoi n’utilise-t-on pas en pratique, de transistors complémentaires ?

8 – Dans quelles conditions, la puissance dissipée sur le collecteur atteint-elle sa valeur maximum ?

9 - Pourquoi dans un étage classe B, la droite de charge tracée sur les caractéristiques de collecteur, peut-elle dépasser la courbe de dissipation maximum ?

Fin de la leçon 20


LECON 21

ETAGE PUSH-PULL - CARACTERISTIQUES COMPOSEES

Dans la leçon précédente, nous avons étudié l'étage de sortie push-pull classe B en considérant le comportement d'un seul transistor ; ceci était possible puisque les deux transistors conduisaient alternativement, l'un pendant  l'alternance négative, l'autre pendant l'alternance positive du signal de commande .

Pour étudier le comportement de l'étage d'un point de vue beaucoup plus complet, il faut considérer les deux transistors et "composer" leurs caractéristiques de façon à obtenir des courbes dites "composées" qui représentent non plus un seul transistor, mais l'ensemble des deux transistors.

Reprenons pour cela l'exemple de la figure 7 Théorie 20, où l'étage était piloté en courant et pour lequel les caractéristiques "composées" et les constructions graphiques qui s'y rapportent sont indiquées à la figure 1.

Comme il apparaît sur cette figure, les caractéristiques "composées" sont obtenues de façon très simple, en juxtaposant les caractéristiques du transistor TR1 à celles de TR2 après avoir retourné ces dernières par rapport aux premières et en les plaçant de telle sorte que les points de repos des deux transistors coïncident. Ainsi pour les caractéristiques de collecteur on fait coïncider le point de repos A'1 (pour TR1) avec A'2 (pour TR2). De cette manière, la droite de charge dynamique relative à TR1, et celle relative à TR2 se trouvent dans le prolongement l'une de l'autre et peuvent être considérées comme une droite de charge unique relative à un transistor fictif, formé par l'ensemble des deux transistors.

D'une façon analogue, nous obtenons la caractéristique dynamique mutuelle en composant les deux caractéristiques après avoir fait coïncider les points de repos A1 et A2.

Les constructions graphiques sont maintenant identiques à celles faites à la figure 8 de la Théorique 20. En traçant la sinusoïde de commande de la base avec une amplitude égale à 4mA et ayant comme axe de référence la verticale passant parle point de repos (A1 = A2) , nous voyons que pendant l'alternance 0-6, le point A1 se déplace jusqu'en C1, puis revient à sa position de repos ; pendant l'alternance 6-12, le point A2 se déplace jusqu'en C2, puis revient à sa position de départ.

En effectuant la construction, nous trouvons l'allure du courant de col-lecteur de TR1 représentée par 0' -1' -3' -5' -6' -7' -9' -11' -12'. (en trait fin) et celle de TR2 représentée par 0" -1" -3" -5" -6" -7" -9" -11" -12" (en pointillés). Etant donné que le transformateur de sortie recompose les deux alternances, la forme du courant délivré à la charge sera celle indiquée par 0' -1' -3' -5' -6' -7" -9" -11" -12"-, à part naturellement la valeur absolue du courant qui au secondaire du transformateur se trouvera multiplié par le rapport de transformation n.

Cette forme de courant peut être obtenue directement, sans avoir à considérer séparémment les deux transistors, en opérant directement sur les caractéristiques dynamiques mutuelles composées comme s'il s'agissait de la caractéristique d'un transistor fictif équivalent à l'ensemble des deux transistors et qui fonctionnerait en classe A. Le point de repos tombe alors au point milieu de la droite, c'est-à-dire en A1 = A2 et pendant le fonctionnement le point balaie la droite de C1 à C2.

On se rend compte tout de suite que la caractéristique "composée" est parfaitement symétrique par rapport au point de repos et que les deux alternances de sortie sont nécessairement identiques, ce que l'on avait difficilement dans un amplificateur classe A.

En passant par l'intermédiaire de la droite de charge, on détermine la forme de la tension de collecteur des deux transistors, forme qui est encore celle de la tension aux bornes de la charge, à part la valeur absolue de la tension. La tension au secondaire du transformateur de sortie est en effet n fois plus petite que celle au primaire.

Il faut encore remarquer que lorsqu'un transistor se trouve au cut-off, (par exemple TR1 pendant l'alternance 6-12) la tension du collecteur ne reste pas constante et de valeur égale à celle de l'alimentation (soit 9 V dans le cas de l'exemple), mais dépasse cette valeur à cause de la tension induite dans la moitié du primaire P1 (figure 2b - Théorique 20) par le courant de collecteur de TR2 qui parcourt l'autre moitié du primaire P2. L'inverse se produit pour la tension de TR2 pendant l'alternance 0-6.

La valeur atteinte par la tension du collecteur pendant l'alternance où le transistor se trouve au cut-off peut être déterminée sur les caractéristiques de collecteur. Il suffit en effet de considérer la droite de charge "composée" et de déterminer sur celle-ci le point de fonctionnement à l'instant considéré.

Les tensions sur les deux collecteurs à cet instant, pourront être lues en correspondance du point de fonctionnement sur l'échelle horizontale relative à l'un ou l'autre transistor. Si l'on considère par exemple le point 9 du courant de commande, le point de fonctionnement sur la droite de charge "composée" se trouve en C'2 ; en correspondance de ce point, on lit sur l'échelle horizon-tale relative à TR2, la valeur 0,5 V et sur celle relative à TR1, on lit 17,5 V.

Ceci signifie que lorsque la tension de collecteur de TR2 atteint la valeur minimum de 0,5 V, la tension de collecteur de TR1 dépasse la valeur de la tension d'alimentation et atteint un maximum de 17,5 V. La forme de la tension de collecteur est tracée à la figure 1, et elle est valable pour les deux transistors : il suffira de lire les valeurs correspondantes des tensions sur les échelles relatives à l'un ou à l'autre.

Si on veut au contraire considérer séparemment le fonctionnement des deux transistors, on voit que pendant l'alternance de conduction 0-6, le point de fonctionnement de TR1 se déplace, comme nous l'avons déjà vu sur la droite de charge de A'1 à C'1 puis revient en A'1.

Pendant l'alternance de blocage 6-12, il se déplace sur l'axe horizontal de A'1 à E'1 puis revient en A'1.

Le déplacement du point de fonctionnement sur l'axe horizontal de A'1 à E'1 signifie en fait, que la tension du collecteur varie de 9 V à 17,5 V pendant que le courant reste nul puisque le transistor est au cut-off. On raisonnera de même pour la tension de collecteur de TR2. Il faut donc se rappeler que pour un étage push-pull classe B comme d'ailleurs pour un simple étage en classe A, c'est-à-dire un étage quelconque couplé à la charge (ou à l'étage suivant) par l'intermédiaire d'un transformateur, la tension de collecteur peut dépasser largement la tension d'alimentation et atteindre des valeurs presque égales ou double de celle-ci.

Dans l'exemple, la tension atteinte est 17,5 V, donc presque le double de la tension d'alimentation (9 V). La tension de collecteur ne dépasse pas la valeur maximum de 20 V admise pour le transistor SFT 131.

DISTORSIONS ET CIRCUITS DE POLARISATION

En observant la forme du courant de collecteur de la figure 1, on remarquera, comme il a été déjà dit dans la leçon Théorique 20, que celui-ci n'est pas parfaitement sinusoïdal parce que le courant relatif aux points 1', 5', 7" et 11" n'est pas égal à la moitié du courant maximum comme cela devrait être. Il y a donc une distorsion introduite par la caractéristique dynamique mutuelle, qui n'est pas parfaitement rectiligne.

Cette distorsion cependant est relativement faible et peut être acceptée dans la plupart des cas. Il faut aussi remarquer qu'en général un étage de sortie n'est jamais commandé en courant, mais plutôt en tension.

En d'autres termes, dans un étage de sortie, on s'impose la forme de la tension appliquée au primaire du transformateur d'entrée, plutôt que la forme du courant qui traverse ce primaire, comme on l'a supposé dans le cas de l'exemple de la figure 1. Il est donc intéressant d'étudier le comportement du circuit commandé en tension, en particulier du point de vue des distorsions.

Pour que l'étage de sortie soit commandé en tension, au lieu de l'être en courant, le schéma de la figure 7 Théorique 20 doit être modifié comme il est indiqué à la figure 2, en utilisant un potentiomètre Pe de faible valeur et en supprimant la résistance R de forte valeur placée en série avec le primaire du transformateur d'entrée.

Les constructions relatives sont indiquées à la figure 3, où pour plus de clarté, on a négligé la construction relative à la tension du collecteur, qui comme on l'a vu à plusieurs reprises, est de forme identique à celle du cou-rant de collecteur.

Il faut tout d'abord, "composer" les caractéristiques d'entrée des deux transistors en faisant coïncider les points de repos A'1 et A'2 correspondant à un courant de base de zéro milliampère, et à une tension Vbe nulle. La base se trouve donc au même potentiel que l'émetteur, c'est-à-dire à la masse, puisqu'elle est reliée à celle-ci par l'intermédiaire d'une moitié de l'enroulement secondaire du transformateur d'entrée.

Si l'on désire que le courant de collecteur atteigne la valeur maximum de 280mA comme dans le cas précédent, le point de fonctionnement devra atteindre les points C'1 et C'2 sur la caractéristique d'entrée. D'après cette dernière, on voit que pour obtenir un courant de base de 4mA (correspondant à 280mA de courant de collecteur), la tension entre la base et l'émetteur devra avoir une valeur crête de 0,44 V (figure 3).

En effectuant les constructions graphiques, on trouve que le courant de commande de la base et par voie de conséquence le courant de collecteur est loin d'être sinusoïdal et en particulier aux intersections de la courbe avec l'axe de référence, c'est-à-dire aux points 0, 6 et 12.

Le courant de base (et le courant de collecteur) est nul pendant une fraction du temps assez grande autour de ces points.

La distorsion du courant de collecteur est très grande : il suffit d'observer que lorsque la tension de commande aux points 1, 5, 7 et 11 a une valeur égale à la moitié du maximum (V'be = 0,22 V) le courant de collecteur est égal à 26mA seulement, c'est-à-dire à peine un dizième de la valeur maximum, au lieu d'être égal à la moitié.

Si l'on part avec une tension de commande d'amplitude plus faible (par exemple la moitié de celle de tout à l'heure), on voit que la distorsion est encore plus marquée et le courant du collecteur se réduit à des alternances assez séparées l'une de l'autre ; la valeur maximum du courant n'est pas réduite de moitié, mais de beaucoup plus (figure 3).

Si l'on examine la caractéristique d'entrée, on voit que le courant de base ne commence à circuler que lorsque la tension Vbe est supérieure à 0,1V ; au-dessus de cette valeur, le courant de base croît, mais pas proportionnellement à la tension de commande; il croît d'abord très lentement, puis de plus en plus rapidement. Ce phénomène est visible sur la caractéristique d'entrée, qui jusqu'à des valeurs de tension de 0,1V environ, coïncide avec l'axe vertical, puis s'en éloigne mais d'une façon curviligne.

La distorsion du courant de base et du courant de collecteur est due à la courbure de la caractéristique d'entrée. C'est pour cette raison qu'on l'appelle "distorsion initiale". Pour éviter cet inconvénient, il faut polariser les bases des deux transistors de façon à ce qu'ils conduisent un peu en l'absence de signal.

Ceci peut être obtenu en reliant la prise milieu du secondaire du transformateur non pas à la masse, mais à un pont de résistances R2 et R3 qui donne une tension de quelques dizièmes de volt, comme indiqué sur la figure 4.

Supposons que la tension de polarisation ainsi obtenue soit de 0,2V, les points de repos A'1et A'2 se déplacent sur la caractéristique en correspondance de Vbeo = 0,2V. Les deux caractéristiques d'entrée sont alors "composées" en faisant coïncider sur la même ligne horizontale ces points de repos (voir figure 5).

 

La construction graphique pour la détermination de la forme du courant de collecteur sera obtenue en dessinant tout d'abord la sinusoïde qui représente la tension de commande et axée sur 1' horizontale passant par les points de repos A'1 et A'2. Si l'on veut encore obtenir un courant maximum de collecteur de 280mA, correspondant à un courant de base de 4mA, le point de fonctionnement de chacun des transistors devra encore atteindre les points C' (C'1 pour TR1 et C'2 pour TR2) qui correspondent à une tension Vbe de 0,44V, comme on l'a déjà vu à la figure 3. Mais comme maintenant en l'absence du signal de commande, les bases se trouvent déjà polarisées à 0,2V, pour les amener à 0,44V il suffira de leur appliquer une tension de commande d'amplitude maximum de: 0,44-0,2=0,24V (voir figure 5). En résumé, on applique sur les bases une tension de polarisation de 0,2V (c'est la composante continue) et une tension de commande de 0,24V crête (c'est la composante alternative).

On peut maintenant déterminer les formes des courants de base et de collecteur.

Lorsque la tension de commande est nulle (points 0-6 et 12) le courant de base n'est pas nul comme auparavant, mais a une valeur Ibo de 0,2mA ; le courant de collecteur Ico est de l'ordre de 15mA (figure 5).

Les deux transistors conduisent simultanément, même en l'absence de signal. Pendant l'alternance 0-6 de la tension de commande, le point de fonctionnement de TR1 par exemple, se déplace de A'1 jusqu'en C'1 puis revient en A'1 ; pendant l'alternance 6-12, le point de fonctionnement se déplace de A'1 jusqu'en K'1 puis revient en A'1 le courant de base s'annule seulement lorsque le point de fonctionnement arrive en H'1 correspondant aux points 7 et 11.

On en déduit que TR1 conduit un peu plus d'une demi-période, puisqu'il conduit non seulement entre 0 et 6 mais encore jusqu'au point 7, puis recommence à conduire à partir du point 11, au lieu du point 12 comme avant. (On raisonnera de même pour TR2).

En conclusion, nous dirons qu'avec cette polarisation appliquée aux deux transistors, ceux-ci conduisent pendant plus d'une demi-période du signal de commande, et qu'il existe en outre un intervalle de la période (intervalle 5 à 7) où les deux transistors conduisent simultanément. Un tel fonctionnement est intermédiaire entre celui de la classe B (où les deux transistors ne conduisaient que pendant une demi-période) et celui de la classe A (où ils conduisaient en permanence). Pour cette raison, on dit que l'étage travaille en classe AB.

Le courant dans la charge est obtenu en combinant les deux courants de collecteur ; il faut encore remarquer que Ic1 et Ic2 circulent dans les deux moitiés du primaire du transformateur de sortie en sens opposé et se compensent donc totalement ou en partie lorsqu'ils circulent simultanément.

Lorsqu'ils sont égaux (points 6' et 6" par exemple) ils se compensent parfaitement, et tout se passe comme s'il n'y avait pas de courant dans le primaire. Quand ils ne sont plus égaux, tout se passe comme si le primaire était traversé par leur différence.

On obtiendra donc la forme du courant résultant en faisant pour chaque point la différence entre les deux courants. Dans le cas de la figure 5, pendant l'intervalle de temps 1 - 5 - TR1 conduit seul. Pendant l'intervalle 7 - 11, TR2 conduit seul. La forme du courant est donc celle due aux transistors seuls, c'est-à-dire respectivement 1', 2', 3', 4', 5' et 7", 8", 9", 10", 11".

Dans l'intervalle de temps 5-7 les deux transistors conduisent simultanément et le courant résultant est dessiné en pointillés sur la figure, soit 5', 6 et 7".

La forme résultante pour une période est représentée par les points 0, 1', 2', 3', 4', 5', 6, 7", 8", 9", 10", 11", 12 , et est pratiquement sinusoïdale comme celle de la tension de commande.

On remarquera de même que le courant correspondant aux points l', 5', 7" et 11", est de 130mA, c'est-à-dire presque égal à la moitié de la valeur maximum. Les distorsions sont très réduites par rapport au cas de la figure 1.

On peut encore noter que la forme résultante du courant de collecteur peut être obtenue en considérant la caractéristique "composée" d'entrée obtenue à partir des deux caractéristiques, en faisant pour chaque valeur de la tension de commande, la différence entre les courants de base des deux transistors. Celle-ci coïncide avec celle des deux transistors seuls dans les régions C'1 -B'1 et B'2 - C'2 et celle dessinée en pointillés dans la région B'1 - B'1.

En considérant alors le point de fonctionnement qui se déplace sur une telle caractéristique de C'1 à C'2 pendant une période complète de la tension de commande, on détermine directement la forme des courants des bases et des collecteurs.

STABILISATION THERMIQUE

Comme tout autre circuit, l'étage push-pull classe B ou AB nécessite une compensation thermique de façon à éviter les inconvénients décrits dans la 19ème leçon Théorique, à propos de la sécurité de fonctionnement des transis-tors de puissance.

La stabilisation thermique peut être obtenue à l'aide de l'une des méthodes indiquées en leur temps, et parmi lesquelles la plus simple consiste à insérer une résistance dans le circuit de l'émetteur. Dans le cas d'un étage push-pull, il y a deux possibilités : placer une résistance dans chacun des émetteurs, ou bien réunir les deux émetteurs ensemble et insérer une résistance commune. Cette dernière solution est la plus adaptée car plus économique (une seule résistance utilisée) et parce qu'elle présente quelques avantages du point de vue fonction-nement de l'étage (comme on pourrait le démontrer) .

Le schéma d'un étage push-pull classe AB avec stabilisation thermique est représentée à la figure 6 où la stabilisation est obtenue avec la résistance Re placée dans les émetteurs et où le  pont R2 - R3 sert à la polarisation des deux transistors.

Pour obtenir une bonne stabilisation, il faut que Re ait une valeur telle, qu'en l'absence de signal (au repos), la tension à ses bornes soit de l'ordre de un à deux dixièmes de la valeur de la tension d'alimentation.

Dans l'exemple, on a Vcc = 9V, la chute de tension aux bornes de Re doit être comprise entre 0,9 et 1,8V.

Comme Re est parcourue par les deux courants de repos (chacun égal à 15mA), le courant Ieo total qui traverse Re est donc de 30mA.

Cette valeur de la tension est acceptable et Rg convient donc.

On peut maintenant déterminer R2 et R3. Si l'on veut qu'au repos la tension Vbeo, soit de 0,2V, on en déduit que la tension Vbo des deux bases doit être :

En admettant un courant Ir dans le pont de 10mA et en considérant que R2 est traversée par Ir et Ibo, (Ibo est égal à la somme des deux courants de base, soit à 0,4mA, puisque Ibo1 = Ib02 = 0,2mA).

Le calcul de R2 et de R3 donne :

R3 = Vbo / Ir = 0,34V / 10mA = 0,034kΏ

En pratique on prendra des valeurs de résistances dans la série normalisée les plus proches, soit R2 = 820Ώ et R3 = 33Ώ (figure 6).

Le coefficient de stabilité S sera déterminé à l'aide de la formule connue ; Rb est égale à la mise en parallèle de R2 et de R3, soit Rb = 32Ώ environ. En supposant que ß = 100, on obtient :

Cette valeur est acceptable, si l'on considère que pour les étages classe B et AB, la valeur maximum de S à ne pas dépasser, est donnée par la formule :

ici, on a :

Vcc = 9V ; K = 0,09°C/mW et Icbo = 20µA

 

PUISSANCE DE SORTIE ET RENDEMENT

Bien que l'étage fonctionne dans les mêmes conditions que précédemment, la puissance délivrée à la charge est réduite à cause de la présence de la résistance Re. En examinant en effet le schéma de la figure 6, on voit que la résistance Re se trouve en série avec la liaison de l'émetteur c'est-à-dire qu'elle est traversée par le courant d'un transistor pendant une alternance du signal et par le courant de l'autre transistor pendant l'autre alternance,ce qui indique que Re fait partie de la résistance dynamique Rd.

Comme la valeur de Rd doit rester celle qui a été calculée dans la précédente leçon, soit 30Ώ (puisque la résistance de charge Rs est restée inchangée et égale à 5Ώ) et en admettant que la résistance des enroulements reste la nême (rp = 2Ώ et rs = 0,6Ώ), le rapport de transformation n du transformateur ie sortie doit être modifié.

Pour avoir encore Rd = 30Ώ, le rapport n devra être :

valeur arrondie à 2 en pratique.

La résistance de charge Rs ramenée au primaire est donc :

Rp = n2 x Rs = (2)2 x 5 = 4 x 5 = 20

La puissance maximum délivrée à la charge par un seul transistor sera donc : (Po1max  = 588 mW puisque Rd est restée la même).

Pu1max = Po1max = Rp / Rd = 588 x 20/30 = 588 x 0,666 = 392 mW

La puissance maximum fournie par les deux transistors est donc :

Pumax = 2 x 392 = 794mW au lieu de 980 mW comme précédemment.

Le rendement est donc réduit. La puissance absorbée par l'étage lorsque celui-ci délivre la puissance de sortie maximum, reste encore égale à 1,604W, le rendement est donc :

au lieu de 61,15% dans le cas précédent.

La présence de Re amène donc une réduction de la puissance de sortie en ce  sens qu'elle est traversée par le courant qui constitue le signal de sortie des  transistors. On pourrait penser qu'il est possible d'éviter cette perte en mettant en parallèle sur Re, un condensateur de valeur appropriée, comme on l'avait vu dans les 18ème et 19ème leçons Théoriques.

Mais il faut remarquer que dans le cas d'un amplificateur en classe B ou AB (comme toutes les fois où l'amplificateur n'est pas en classe A) il n'est pas possible de placer un condensateur en parallèle sur la résistance de l'émetteur pour la raison suivante.

Les courants des deux transistors traversent Re dans la même direction c'est-à-dire que les alternances de la tension qui apparaît aux bornes de cette résistance suivent l'allure des alternances du courant de chacun des transistors. La formule du signal de sortie (tension ou courant) est représentée sur la même figure.

Si maintenant on place un condensateur Ce de capacité convenable en parallèle sur Re (en pointillés sur la figure 6) ce condensateur va tendre à niveler la tension aux bornes de Re en la rendant d'amplitude constante (figure 7b). La valeur Vem de la tension d'émetteur sera alors égale à la valeur moyenne de la tension développée aux bornes de Re que l'on avait en l'absence de Ce (ligne en pointillés sur la figure 7a).

Les deux émetteurs se trouvant alors polarisés à la tension Vem qui est négative dans le cas des transistors PNP puisque le courant I d'émetteur traverse Re dans la direction masse-émetteur, ce qui indique que les transistors ne vont conduire que lorsque la tension appliquée à leurs bases (signal d'entrée) dépassera la valeur Vem.

Le phénomène est analogue à celui indiqué à la figure 3. Les transistors ne conduisent plus pendant toute la durée d'une demi-période (figure 7b) et le courant et la tension de sortie sont distordues 'exactement comme dans le cas de la figure 3).

Il y a cependant une différence fondamentale dans les deux types de distorsion.

Dans le cas de la figure 3, la distorsion était plus évidente pour les signaux de faible amplitude que pour ceux de grande amplitude. Dans le cas de la figure 7 au contraire, la distorsion reste toujours la même que le signal soit de faible ou de grande amplitude, car la tension V augmente lorsque l'amplitude du signal d'entrée croît.

Pour cette raison, il n'est donc pas possible d'utiliser un condensateur Ce dans les étages classe B ou AB. On doit donc accepter la réduction de la puissance de sortie provoquée par Re ; la valeur de cette résistance d'ailleurs doit rester la plus faible possible et compatible avec la stabilité thermique requise.

RESISTANCE D'ENTREE

On peut définir aussi la valeur de la résistance d'entrée du transistor et de l'étage push-pull classe B ou AB, nécessaire pour déterminer le rapport de transformation du transformateur d'entrée.

La résistance d'entrée rg des transistors est définie de la même manière que celle relative à un étage à un seul transistor classe A (revoir Théorique 19) et comme étant le rapport entre l'excursion Vbpp de la composante alternative de la tension de base et l'excursion Ibpp de la composante alternative du courant de base.

En regardant la figure 5, on trouve :

Rb = Vbpp/Ibpp = 0,48V/8mA = 0,06kΏ = 60Ώ

Cette valeur de la résistance est celle que présente alternativement chaque transistor pendant la demi-période où il conduit.

Pour déterminer la valeur de la résistance d'entrée de l'étage il faut faire quelques remarques. Avant toute chose, il faut dire que la résistance Re est définie comme étant le rapport entre la tension Ve délivrée par un demi-enroule-ment du secondaire du transformateur d'entrée et le courant Ib qui traverse le circuit de base d'un des transistors.

En supposant que l'on ne considère que la seule alternance pendant laquelle TR1 conduit, on fera le calcul au moment où Ib1, atteint sa valeur maximum : Ib1  = 4mA, comme il résulte de la construction de la figure 5. Dans ces conditions, la valeur Vb de la tension de base atteint son maximum : Vbp  = 0,24V.

En reprenant l'examen du schéma de l'étage (redessiné à la figure 8), on notera que le courant de commande de la base de TR1 circule suivant les flèches de la figure : jonction base - émetteur de TR1, secondaire S1 du transformateur d'entrée, résistance R3, résistance Re.

Le secondaire S1 devra donc délivrer une tension dont la valeur maximum Vep est plus grande que Vbp1, puisqu'elle doit compenser la chute de tension aux bornes de R3 et de Re. Elle devra être :

Vep = Vbp1 + Vrp+Vep

La chute de tension Vrp aux bornes de R3 est immédiate :

Vrp=Ibp1xR3=4mAx33=132mV=0,132V

La chute de tension Vep se calcule de la même manière, en se rappelant toutefois que la résistance Re n'est pas seulement traversée par le courant de base Ib1, mais aussi par celui du collecteur Ic1 (voir les flèches de la figure 8). On a donc :

Vep=(Ibp1+Icp1)xRe = (4mA+280mA)x4,7 = 284mAx4,7 = 1334mV = 1,334V

On a enfin:

Vep=Vbp1+Vrp+Vep = 0,24+0,132+1,334 = 1,706V

La résistance d'entrée de l'étage est donc :

Ceci est donc la valeur de la résistance que présente chaque transistor pendant l'alternance où il conduit : c'est-à-dire la valeur de la résistance sur laquelle sont fermées alternativement les deux moitiés du secondaire Te.

On peut maintenant déterminer le rapport de transformation "ne" que devra avoir le transformateur d'entrée. En supposant que l'on puisse négliger les résistances des enroulements primaire et secondaire et que la résistance de charge dynamique del'étage driver doit être par exemple :

Le nombre de spires du primaire devra donc être quatre fois plus grand que le nombre de spires d'un demi-enroulement du secondaire.

Pour piloter l'étage final de la figure 6, le secondaire de Te devra délivrer une tension maximum égale à Vep  = 1,706 V avec un courant maximum égal à Ibp = 4mA, ce qui signifie que les valeurs maxima des composantes alternatives de tension et de courant de collecteur de l'étage pilote (driver) devront être respectivement de :

Vcp = Vep x ne = 1,706 x 4 = 6,824V

Icp = Ibp / ne = 4/4 = 1mA

Ceci étant les valeurs de crête de la tension et du courant (supposés sinusoïdaux), la puissance nécessaire pour piloter l'étage final sera donnée par la formule :

C'est donc la puissance que devra délivrer l'étage pilote.

Avec cet exemple numérique, nous avons complètement terminé l'étude des amplificateurs de puissance push-pull, classe B ou AB, utilisés couramment en radio. Ces amplificateurs peuvent être de puissance plus grande ou plus petite que celle considérée dans l'exemple numérique, le principe de fonctionnement restera toujours le même.


REPONSE AUX EXERCICES DE RÉVISION DE LA 20ème LECON THEORIQUE

1°- Dans un étage push-pull, on doit utiliser deux transistors identiques.

2°- Parce que ces alternances sont délivrées respectivement par l'un puis par l'autre transistor qui travaillent dans les mêmes conditions.

3°- Dans un étage amplificateur classe B , les deux transistors sont polarisés tous les deux au cut-off.

4°- Aucune  puisque les deux transistors sont polarisés au cut-off.

5°- Non, ils conduisent alternativement : l'un pendant l'alternance négative, l'autre pendant l'alternance positive.

6°- Oui, en utilisant un haut-parleur à impédance élevée et qui comprend une bobine avec une prise centrale, ou bien en utilisant un schéma où les deux transistors ne sont plus branchés en opposition de phase mais en série.

7°- Parce qu'il est pratiquement impossible d'obtenir un transistor NPN et un PNP de caractéristiques identiques.

8°- La puissance dissipée sur les collecteurs des transistors dans un étage classe B, atteint sa valeur maximum quand l'amplitude Icp du courant de collecteur est égale à 0,636 fois Icmax.

9°- Parce que le point de fonctionnement ne reste pas dans la zone "interdite" mais y transite uniquement pendant l'alternance où le transistor conduit.


EXERCICES DE RÉVISION SUR LA 21ème LECON THEORIQUE

1°- Qu'appelle-t-on caractéristique  "composée" ?

2°- Pourquoi fait-on travailler les transistors d'un étage de sortie push-pull en classe AB et non en classe B ?

3°- Pourquoi ne peut-on pas mettre de condensateur d'émetteur dans un étage push-pull ne fonctionnant pas en classe A ?

4°- Est-ce que la caractéristique composée est parfaitement symétrique par rapport au point de repos ?

5°- Dans un étage de sortie push-pull, lorsqu'un transistor est au cut-off, la tension de son collecteur reste-t-elle constante ?

6°- Pour une tension d'alimentation de 9 V, quelle serait la tension maximum de collecteur atteinte ?

7°- Dans un étage de sortie, faut-il s'imposer au primaire du transformateur d'entrée la forme de la tension ou celle du courant ?

8°- Qu'appelle-t-on "distorsions initiales" ?

9°- Comment peut-on éviter ces "distorsions initiales" ?

Fin de la leçon 21



LECON 22

1 – LARGEUR DE BANDE ET FRÉQUENCES DE COUPURE

Dans tous les étages amplificateurs à transistors étudiés jusqu’à maintenant, nous avons considéré que le signal appliqué à l’entrée de l’amplificateur avait comme fréquence 50Hz. Cette valeur a été supposée uniquement pour fixer les idées et aurait pu être complètement ignorée puisque toutes les constructions graphiques peuvent être faites sans connaître la fréquence du signal.

Or en réalité, un amplificateur ne peut amplifier que certaines fréquences comprises entre des valeurs plus ou moins proches l’une de l’autre.

Pour étudier le comportement d’un amplificateur du point de vue fréquence du signal appliqué, je vais tout d’abord vous décrire une expérience qui sert à déterminer ce que l’on appelle la "courbe de réponse" d’un amplificateur.

Pour réaliser cet essai, il faut avoir à sa disposition un générateur basse fréquence (car on étudie actuellement des amplificateurs BF) et qui permette de faire varier la fréquence du signal dans toute la gamme qui nous intéresse (par exemple de 20Hz à 20kHz) et de régler l’amplitude à la valeur désirée. Ces réglages sont effectués à l’aide des boutons indiqués par f (fréquence) et A (amplitude) dans le schéma synoptique de la figure 1.

Les bornes de sortie du générateur sont reliées à celles d’entrée de l’amplificateur à essayer et qui a été représenté symboliquement par un rectangle. Les bornes de sortie de l’amplificateur sont reliées à la résistance de charge Rc qui représente par exemple le haut-parleur.

Pendant tout le temps de l’essai, on maintiendra constante la valeur du courant d’entrée de l’amplificateur, mesuré par l’appareil Ie, et pour chaque valeur de la fréquence du signal, on notera les valeurs du courant ou de la tension de sortie (utilisation) mesurées respectivement par le milliampèremètre Iu ou le voltmètre Vu.

La courbe de réponse s’obtient en construisant le graphique de la manière suivante. On porte sur l’axe horizontal les valeurs de la fréquence pour lesquelles on fait la mesure et en correspondance à chacune de ces valeurs, on porte vers le haut les valeurs du courant de sortie (ou de la tension) ou si l’on préfère les valeurs du gain obtenu en divisant la valeur du courant de sortie par la valeur du courant d’entrée, la fréquence restant constante pendant la mesure.

Le graphique obtenu à l’allure typique de la figure 2. Il est en fait constitué de trois régions bien distinctes : la région centrale, presque horizontale, et deux régions décroissant rapidement vers le bas. La signification physique d’une telle courbe se comprend : la région droite indique que le gain de l’amplificateur reste constant pour toutes les fréquences comprises dans cette région. Tandis que pour des fréquences inférieures à une certaine valeur et supérieure à une certaine autre valeur, la courbe descend, ce qui signifie que le gain décroît rapidement.

En d’autres termes, la région centrale droite définit la Bande de fréquence dans laquelle l’amplificateur fonctionne normalement ; en dehors de cette région, on ne peut plus l’utiliser car son gain descend à des valeurs inacceptables.

Comme les deux régions inclinées se raccordent à la région centrale d’une façon relativement "douce", les fréquences qui délimitent la région centrale sont mal définies.

On a donc décidé par convention de considérer les points de la courbe pour lesquels le gain se réduit à 70,7% de la valeur de la région centrale (considérée à 100%). Je vous ai repéré ces deux points sur la figure 2, par "1" et "2". Les fréquences f1 et f2 qui correspondent à ces points, prennent respectivement le nom de fréquence de coupure inférieure et fréquence de coupure supérieure. Les deux fréquences délimitent la bande de fréquence où l’amplificateur peut être utilisé.

On peut maintenant définir la largeur de bande de l’amplificateur souvent repérée par la lettre B et qui est la différence entre les deux fréquences de coupure : B = f2 – f1.

Il serait trop long d’expliquer les raisons pour lesquelles on a défini ainsi les fréquences de coupure. Il suffit seulement de remarquer qu’une réduction du gain en courant (ou en tension) à 70,7% de la valeur correspondant à la région centrale, équivaut à une réduction du gain en puissance de 50% (c’est-à-dire de moitié).

On peut donc dire que les fréquences de coupure sont telles que la puissance de sortie se réduit à la moitié de ce qu’elle est pour les fréquences centrales, lorsque le courant (ou la tensio) de commande à l’entrée reste constant pour toutes les fréquences.

Les fréquences de coupure sont des valeurs caractéristiques de l’amplificateur et ne dépendent exclusivement que des composants du circuit.

Pour fixer les idées, nous dirons que pour un amplificateur BF normal, la valeur de f1 est comprise entre 50 et 200Hz et que la valeur de f2 est comprise entre 5kHz et 10kHz. Pour un amplificateur à haute fidélité, f1 est comprse entre 20Hz et 50Hz et f2 entre 10kHz et 15kHz.

Après avoir défini ce qu’étaient les fréquences de coupure, nous allons voir comment on peut les déterminer théoriquement à partir des valeurs des composants qui constituent l’amplificateur.

1 – 1 FRÉQUENCE DE COUPURE SUPÉRIEURE

Nous avons vu dans la théorie 12 que le coefficient d’amplification en courant β correspondait au paramètre h21e et qu’il était défini par :

β = h21e = i2/i1

où i1 indique l’accroissement du courant de base provoqué par la variation de la résistance de polarisation de la base (RB - figure 5 - théorique 12) et i2 l’accroissement correspondant du courant de collecteur.

Au lieu de provoquer un accroissement permanent du courant de base comme c’était le cas dans la théorie 12, nous pouvons provoquer un accroissement qui se répète périodiquemenr en appliquant un signal sinusoïdal sur la base. Dans ce cas en effet, à chaque période du signal, le courant de base subit un accroissement et une diminution par rapport à sa valeur de repos. Le courant de collecteur va suivre ces variations et subira un accroissement et une diminution périodique.

La valeur de β peut donc être calculée aussi à l’aide de la même formule, ou i1 et i2 seront les amplitudes des accroissements et des diminutions périodiques du courant de base et du courant de collecteur, c’est-à-dire leurs excursions, ou si l’on préfère les amplitudes des "composantes alternatives" des deux courants.

L’avantage d’une telle mesure du coefficient d’amplification est de pouvoir faire varier la fréquence du signal et de voir comment varie la valeur de β lorsque croît la fréquence.

On peut utiliser pour fixer les idées, le circuit indiqué sur la figure 3. On règle le point de repos du transistor à la valeur désirée, puis on injecte sur la base du signal de sortie du générateur BF à travers une résistance R1 de forte valeur (100kΩ par exemple) pour avoir une commande en courant. La valeur de i1 sera alors indiquée par l’appareil de mesure pour courant alternatif I1 et i2 par I2 (milliampèremètre pour courant alternatif aussi). Ce dernier ne doit seulement être sensible qu’au courant alternatif du collecteur et ne pas mesurer la composante "continue", ce qui peut se faire en pratique par un artifice de montage qu’il serait trop long d’expliquer ici.

La valeur de β obtenue à l’aide de cette méthode est pratiquement la même que celle que l’on avait obtenue dans la 12ème théorie si la fréquence du signal appliqué à la base est relativement faible. Si l’on augmente la fréquence, on trouve que β commence à diminuer à partir d’un certain moment (fig 4).

Par analogie avec ce qui a été dit auparavant, on peut définir une certaine fréquence de coupure propre au transistor en émetteur commun (indiqué en général par fβ ou fαe), fréquence pour laquelle la valeur de β se réduit à 70,7% de sa valeur aux fréquences basses.

Si l’on procède de même, mais pour le transistor en base à la masse, on trouve que le coefficient α commence à diminuer lorsque la fréquence atteint une certaine valeur (voir figure 4). On définit de la même manière, la fréquence de coupure propre du transistor en montage base commune et que l’on indique par fα (ou fαb).

La fréquence fα est toujours supérieure à fβ ; on trouve que fα est environ β fois plus grande que fβ. Ces valeurs indiquent la fréquence maximum à laquelle le transistor peut être utilisé comme amplificateur, respectivement en montage base à la masse et émetteur à la masse, et représentent donc aussi la fréquence de coupure supérieure f2 de l’amplificateur.

Comme normalement les transistors sont utilisés en émetteur commun, on peut dire que la fréquence de coupure supérieure de l’amplificateur coïncide avec la fréquence fβ du transistor utilisé.

La raison de la diminution de la valeur du coefficient d’amplification réside principalement dans les phénomènes complexes de la conduction à l’intérieur du transistor, ce qui a été déjà étudié en son temps.

En quelques mots, on peut rappeler qu’à cause de la capacité d’entrée et de sortie du transistor (théorique 12) le courant de collecteur suit le courant de commande avec un certain retard, et lorsque le courant de base varie trop rapidement (fréquences élevées), le courant du collecteur ne peut plus suivre ces variations rapides et l’amplification du transistor tombe à des valeurs très faibles.

Pour les transistors utilisés en basse fréquence, la valeur de fβ est comprise en général entre 6kHz et 15kHz ; fα par contre est comprise entre 500kHz et un peu plus de 1 MHz. Ainsi :

Prenons par exemple le schéma de la figure 5 (qui est le même que celui de la figure 4 théorique 17), la fréquence de coupure du premier étage est de 30kHz environ (transistor SFT151). Si l’on voulait réduire la fréquence de coupure supérieure de l’amplificateur à une valeur plus faible que celle du transistor, il suffirait de placer entre le collecteur et la masse, un condensateur. La valeur d’un tel condensateur Cc devra être d’autant plus élevée qu’on désire une fréquence de coupure faible et que plus faible est la valeur de la résistance de sortie de l’étage. Ceci est en général déterminé en pratique par voie expérimentale.

1 – 2 FRÉQUENCE DE COUPURE INFÉRIEURE

La fréquence de coupure inférieure d’un étage est déterminée par la valeur de la capacité placée en parallèle sur la résistance d’émetteur. Cette capacité a en effet pour rôle de créer une voie facile pour la composante alternative du courant de collecteur et d’éviter une forte réduction de gain qui est introduit par la présence de la résistance d’émetteur (revoir théorique 17).

En se rappelant maintenant qu’un condensateur de capacité C se comporte vis-à-vis du courant alternatif comme une "résistance" (on dit réactance) de valeur Xc = 1/(2πfC) on en déduit qu’il laissera passer le courant alternatif d’autant moins facilement que la fréquence sera plus faible.

Ainsi, si l’on diminue progressivement la fréquence du signal appliqué à l’amplificateur de la figure 5, le condensateur CE va s’opposer de plus en plus au passage de la composante alternative du courant de collecteur et son action va devenir de moins en moins efficace.

A un certain moment, il ne pourra plus éviter la contre-réaction dûe à RE et le gain de l’étage va commencer à diminuer. Il existe donc une certaine fréquence pour laquelle le gain se réduit à 70,7% de la valeur pour les fréquences moyennes : cette fréquence sera donc considérée comme fréquence de coupure inférieure dûe à CE. Elle peut être déterminée facilement à l’aide de la formule suivante :

f1 = 159/(RE CE) x (1 + (β x RE)/(rB+RA))

et inversement, si l’on désire obtenir une certaine valeur de la fréquence de coupure f1, la valeur de CE devra être :

CE = 159/(RE x f1) x (1 + (β x RE)/(rB+RA))

Dans ces deux formules, on doit toujours exprimer la résistance en kΩ, la capacité en µF et la fréquence enHz. Il faut encore remarquer que rB représente la résistance d’entrée du transistor seul tandis que RB est égale à la mise en parallèle de RB de l’étage considéré (égale elle-même à R2 en parallèle avec R3) et de la résistance de sortie rs de l’étage précédent. Si l’étage considéré n’est pas précédé par un autre étage (comme c’est le cas du premier étage de la figure 5) alors RB = RB.

Examinons par exemple, le second étage de la figure 5. On avait trouvé dans la 16ème leçon de théorie que RB = 3,03kΩ et que rs coïncidait pratiquement avec la valeur de Rc, soit 0,9kΩ ; on a donc :

RB = (RB x rs)/(RB+rs ) = (3,03 x 0,9)/(3,03+0,9) = 2,727/3,93 = 0,693kΩ environ

On a d’autre part :

RE = 0,6kΩ, CE = 100 µF, β = 49,5.

La valeur de f1 est donc :

f1 = 159/(0,6 x 100) x (1 + (49,5 x 0,6)/(0,75+0,693)) = 159/60 x (1 + 29,7/1,443) = 2,65 x (1 + 20,6) = 2,65 x 21,6 = 57,24Hz

Dans le cas du 1er étage, on a RB = RB = 3,03kΩ et on trouverait que f1 = 23Hz environ.

Un autre élément qui peut limiter l’amplification aux fréquences basses et qui peut aussi déterminer la fréquence de coupure inférieure est le condensateur C de liaison entre étages (ou entre l’étage et la charge) (figure 5).

En effet, en diminuant la fréquence du signal, C s’oppose toujours de plus en plus au passage du courant alternatif, délivré par TR1 pour piloter TR2. On voit donc qu’en diminuant la fréquence on trouvera certainement une valeur de f1 pour laquelle le courant de commande de TR2 va se réduire à 70,7% de sa valeur normale. Cette fréquence représentera donc la fréquence de coupure inférieure.

La valeur de f1, déterminée par le condensateur de liaison est donné par la formule :

f1 = 159/(C x (rs+re))

ou bien si l’on se fixe la valeur de f1, la valeur de C devra être :

C = 159/(f1 x (rs+re))

Dans cette formule, rs est la résistance de sortie de l’étage qui précède C et re, la résistance d’entrée de l’étage qui suit C ; r doit être exprimé en kΩ, C en µF et f en Hz.

A remarquer encore que la fréquence de coupure inférieure est d’autant plus basse que la capacité utilisée pour la liaison est plus grande.

Dans le cas de la figure 5 par exemple, rs est presque égal à RC, soit de 0,9kΩ et re = 0,6kΩ. Si on utilise un condensateur de liaison C de 0,5µF, on a une fréquence de coupure de :

f1 = 159/(0,5 x (0,9+0,6)) = 159/(0,5 x 1,5) = 159/0,75 = 212Hz

Des deux fréquences de coupure ainsi obtenues avec CE et C, on devra prendre celle qui a la valeur la plus grande, puisque c’est celle qui limite le plus la bande passante. Pour le premier et pour le second étage de la figure 5 (car ils sont égaux) on prendra comme fréquence de coupure inférieure, la valeur f1 = 212Hz

Lorsque la liaison entre deux étages, ou entre l’étage et sa charge est du type inductif (par transformateur), on démontre que la fréquence de coupure inférieure dépend de l’inductance du primaire du transformateur et est d’autant plus basse que la valeur L de cette inductance est plus grande.

La formule à utiliser est alors :

f1 = (159 x R)/L ou L = (159 x R)/f1

avec f1 en Hz, R en kΩ et L en Henrys.

R représente la résistance équivalente à la mise en parallèle de la résistance de sortie rc du transistor relié au primaire du transformateur et de la résistance d’entrée re de l’étage suivant ramenée au primaire, c’est-à-dire multipliée par n2 ; on a donc :

R = (rc x n2 re)/(rc + n2 re)

Dans le cas de l’exemple de la figure 6 théorique 17, on a n2 = 2 (car n = 1,41) et re = 0,75kΩ ; comme rc = 14kΩ environ, on trouve R = 1,355kΩ environ. Si l’inductance primaire du transformateur est de 4 H (Henry), la fréquence de coupure est :

f1 = (159 x 1,355)/4 = 53,86Hz

S’il s’agit d’un étage de sortie, re n’est autre que la résistance de charge RS qui ramenée à l’entrée est : Rp = n2s x Rs et qui est toujours plus faible que celle de sortie rc du transistor de sortie. Dans ces conditions, la mise en parallèle de rc et de Rp est équivalente à Rp à peu de chose, on peut donc prendre dans la formule précédente R = Rp.

Reprenons l’exemple du schéma de la figure 6 ; si nous désirons avoir une fréquence de coupure de 20Hz, avec R = Rp = 20Ω = 0,020kΩ, la valeur de L devra être :

L = (159 x R)/f1 = (159 x 0,02)/20 = 0,159 H

Cette valeur d’inductance correspond obligatoirement à la moitié du primaire du transformateur de sortie, puisqu’il s’agit d’un amplificateur classe B.

1 – 3 FRÉQUENCE DE COUPURE D’UN AMPLIFICATEUR A PLUSIEURS ÉTAGES.

Pour obtenir les fréquences de coupure f'1 et f'2 d’un amplificateur à plusieurs étages en connaissant celles des étages qui le composent, il faut encore distinguer les deux cas suivants :

1) Les étages composants sont tous identiques

Dans ce cas, tous les étages composants ont la même fréquence de coupure inférieure f1 et la même de coupure supérieure f2. On a donc :

f'1 = f1 x K f'2 = f2 / K

K étant un coefficient qui dépend du nombre d’étages et qui est donné par le tableau suivant :

Nombre d’étage2345678
Valeur de K1,561,962,302,592,863,103,32

Par exemple l’amplificateur de la figure 5, est formé de deux étages égaux et pour chacun d’eux on a : f1 = 212Hz et f2 = 10kHz. On a dans ce cas :

K = 1,56

f'1 = f1 x K = 212 x 1,56 = 330Hz environ

f'2 = f2 / K = 10 / 1,56 = 6,4kHz environ

On voit donc, qu’en augmentant le nombre d’étages en cascades, la bande passante totale diminue car f'1 augmente et f'2 diminue.

2) Les étages composants sont tous différents (leurs fréquences de coupure sont donc toutes différentes)

Dans ce cas on obtient, avec une très bonne approximation, comme fréquence de coupure inférieures de l’amplificateur celle la plus élevée des fréquences de coupure inférieures des étages composants et comme fréquence de coupure supérieure celle la plus faible des étages composants. En effet, ce sont ces fréquences-là qui limitent le plus la bande passante totale.


EXERCICES DE RÉVISION SUR LA 22ème LEÇON THÉORIQUE

1 – Quels sont les appareils de mesure (de base) que l’on doit utiliser pour relever la courbe de réponse d’un amplificateur ?

2 – Comment doit-on opérer lors du relevé d’une courbe de réponse ?

3 – Qu’exprime la courbe de réponse ?

4 - Comment définit-on la fréquence de coupure d’un amplificateur ?

5 – Comment est définie la bande passante d’un amplificateur ?

6 – De quoi dépend la fréquence de coupure supérieure d’un étage ?

7 – De quoi dépend la fréquence de coupure inférieure d’un étage à liaison par capacité ?

8 – De quoi dépend la fréquence de coupure inférieure d’un étage à liaison par transformateur ?

9 – Comment est la bande passante d’un amplificateur à plusieurs étages identiques, par rapport à celle d’un seul étage ?


RÉPONSES AUX EXERCICES DE RÉVISION SUR LA 21ème LEÇON THÉORIQUE

1 – On appelle "caractéristique composée", la caractéristique qui résulte de la composition des deux caractéristiques relatives aux transistors qui travaillent en opposition de phase.

2 – Si l’on fait travailler les transistors d’un étage de sortie push-pull en classe AB au lieu de la classe B, c’est pour éviter ce que l’on appelle les distorsions "initiales" dûes au fait que les transistors ne conduisent pas pour de faibles tensions appliquées à leur base.

3 – Si l’on place un condensateur sur les émetteurs d’un étage push-pull ne fonctionnant pas en classe A, on tend alors à polariser les émetteurs avec comme conséquence la distorsion du signal de sortie.

4 – La caractéristique composée est symétrique par rapport au point de repos : de ce fait, les deux alternances de sortie sont parfaitement identiques

5 – Non, la tension de collecteur du transistor bloqué ne reste pas constante, mais dépasse cette valeur à cause de la tension induite dans la moitié du primaire correspondant.

6 – Pour une alimentation de 9 V, la tension de collecteur atteinte pourrait être au maximum de 18 V.

7 – Dans un étage de sortie, on s’impose la forme de la tension appliquée au primaire du transformateur d’entrée.

8 - On appelle "distorsions initiales", les distorsions du courant de base et du courant de collecteur et qui sont dûes à la courbure de la caractéristique d’entrée.

9 – On peut les éviter en polarisant légèrement les bases des deux transistors.

Fin de la leçon 22


LECON 23

1 – AMPLIFICATEURS SÉLECTIFS

Dans la leçon précédente, nous avons vu qu’un amplificateur ne pouvait fonctionner que dans une gamme de fréquence limitée du côté haut par la fréquence de coupure du transistor et du côté bas par les composants de liaison entre étages.

La bande passante d’un tel amplificateur est quand même très large et on peut faire en sorte que la fréquence de coupure supérieure soit mille fois plus grande que la fréquence de coupure inférieure (c'e st par exemple le cas d’un amplificateur dont la bande s’étend de 20Hz à 20kHz). Pour cette raison, l’amplificateur est appelé Apériodique, car il n’amplifie pas de fréquence préférentielle.

En utilisant un circuit de charge appropriée, à la place de la seule résistance (placée directement dans la connexion du collecteur, ou couplée à ce dernier à l’aide d’un condensateur ou d’un transformateur), on peut obtenir une bande passante extrêmement réduite par rapport à celle d’un amplificateur apériodique, si bien que l’on peut dire que l’amplificateur n’amplifie qu’une seule fréquence bien déterminée. Ce type d’amplificateur est appelé Sélectif (ou encore accordé) à cause de sa propriété de sélectionner et d’amplifier une seule fréquence parmi toutes celles qui sont injectées à son entrée.

Le schéma le plus simple d’un amplificateur sélectif est celui qui est indiqué à la figure 1 où l’on a placé dans le circuit du collecteur un circuit résonnant composé d’une inductance L, d’une capacité C et d’une résistance R placées toutes les trois en parallèle. (On ne considère ici qu’un montage en émetteur commun, mais tout ce qui va être dit reste valable pour les autres montages, compte tenu d’une très faible différence).

Avant de considérer le fonctionnement du circuit de la fig 1, il convient de rappeler brièvement les propriétés d’un circuit résonnant. Il suffit pour cela d’alimenter le circuit résonnant à l’aide d’un générateur de signaux (du type de celui vu dans la précédente leçon) à travers une résistance R1 de forte valeur (figure 2a).

Supposons maintenant que nous réglions la tension de sortie du générateur de manière que le courant indiqué par l’appareil de mesure I ait une certaine valeur, par exemple 1mA et que nous mesurions avec le voltmètre V la tension qui apparait aux bornes du circuit résonnant. Si nous répétons ces mesures pour différentes valeurs de la fréquence (en maintenant constant le courant à l’entrée), et si nous notons pour chaque fréquence la valeur de la tension correspondante, nous pouvons tracer un graphique en portant sur l’axe horizontal les valeurs de la fréquence et sur l’axe vertical les valeurs correspondantes de la tension.

Le graphique ainsi obtenu prend le nom de courbe de résonnance du circuit considéré et a l’aspect typique de la figure 2b en forme de cloche ou comme on dit quelquefois en "chapeau de gendarme"

La fréquence à laquelle la courbe atteint le sommet (point 3 de la figure 2b) est appelé fréquence de résonance du circuit et est en général indiquée par le symbole fo

La valeur de fo dépend uniquement des valeurs de l’inductance L et de la capacité C et est donnée par la formule :

fo = 159/√LxC

où :

Il faut encore se rappeler que 1nF (nanofarad) est égal à 1.000pF ; ce sous multiple du farad est souvent indiqué en kilopicofarad (kpF) selon la dénomination américaine.

Prenons un exemple : supposons que dans le schéma de la figure 2a, nous ayons : L = 4,5 mH et C = 2nF. La fréquence de résonnance est alors :

fo = 159/√(4,5x2) = 159/√9 = 159/(3 ) = 53Hz

On démontre qu’à la fréquence de résonance la réactance XL de l’inductance est égale à la réactance XC de la capacité. Ces réactances sont données par les formules :

XL = (f x L)/159 et XC = 159/(f x C)

où XL et XC sont exprimées en kΩ et les autres grandeurs sont exprimées respectivement comme suit :

f en HzL en HC en µF
f en kHzL en mHC en nF
f en MHzL en µHC en pF

Je vous rappelle que la formule de base qui donne la fréquence de résonance d’un circuit est :

fo = 1/(2π√(LxC))

où :

Si vous avez oublié les unités des autres formules, vous pouvez toujours reprendre cette dernière formule et vous serez certain de ne pas commettre d’erreur.

1 Henry = 103 mH = 106 µH

1 Farad = 106µF = 109nF = 109kpF = 1012pF

Prenons un exemple : soit fo = 53kHz L = 4,5 mH C = 2nF

Ces valeurs des réactances à la fréquence de résonnance (XL = XC) sont indiquées par le symbole Xo

Pour expliquer la forme de la courbe de résonnance, il faut remarquer que les valeurs des tensions portées sur le graphique de la figure 2b sont données par le produit du courant que l’on fait circuler dans le circuit (dont la valeur est mesurée par l’appareil I et qui est maintenu constant pour toutes les fréquences) par l’impédance du circuit.

Or, le circuit résonnant est formé de trois éléments en parallèle ; son impédance est donnée par la mise en parallèle de la résistance R, de la réactance XL de l’inductance et de la réactance XC de la capacité. Sa valeur est calculée à l’aide d’une formule assez complexe que je vous indique ci-dessous, mais qu’il est inutile d’apprendre par cœur.

Z = 1/(1/R2 + (Cω - 1/(Lω)2)1/2

ω se lit ici "omega"

où Z est l’impédance exprimée en Ω, si R est en Ω, C en Farad et L en Henry.

ω = 2πf = 2 x 3,14 x f = 6,28 f (ω est la pulsation)

f étant la fréquence exprimée en Hz.

Les résultats de cette formule indiquent qu’un circuit tel que celui de la figure 2a, se comporte de trois façons différentes, suivant que la fréquence du courant qui le traverse est égale à la fréquence de résonnance fo, qu’elle est plus basse que fo ou plus élevée que fo.

A la fréquence de résonnance, le circuit résonnant se comporte comme une simple résistance de valeur égale à R. On aurait pu prévoir ce résultat intuitivement en sachant qu’à la fréquence fo, les réactances de L et de C sont égales et opposées, leurs effets se détruisent mutuellement, et pour le circuit, tout se passe comme si L et C n’existaient pas.

A une fréquence inférieure à la fréquence de résonance, le circuit se comporte comme une résistance R qui aurait en parallèle à ses bornes une inductance L’ dont la valeur croît au fur et à mesure que la fréquence considérée devient plus basse que la fréquence de résonance. On peut encore expliquer ceci en disant que lorsque la fréquence diminue, la réactance XL diminue (revoir les formules qui donnent XL et XC) tandis que XC augmente. Ainsi, à une fréquence plus basse que fo, le courant passe plus facilement à travers l’inductance qu’à travers la capacité, ce qui en d’autres termes signifie que l’effet de l’inductance prédomine sur celui de la capacité.

Pour des fréquences plus élevées que fo, le circuit se comporte comme une résistance R qui aurait une capacité C’ en parallèle à ses bornes dont la valeur diminuerait au fur et à mesure que la fréquence deviendrait plus grande que fo. Ce fait peut s’expliquer en pensant que lorsque la fréquence augmente, XL augmente aussi tandis que XC diminue. En raisonnant comme tout à l’heure, on en déduit que le courant passe plus facilement au travers de la capacité et l’effet de celle-ci devient prédominant.

Les trois cas que nous venons d’examiner sont reportés à la figure 3. A la fréquence fo, la tension aux bornes du circuit est égale au produit du courant par la valeur de R ; si par exemple R = 150kΩ et le courant égal à 1mA (comme supposé) la tension correspondant au point 3 de la figure 2b sera :

1mA x 150kΩ= 150V

Pour des fréquences différentes de fo, l’impédance du circuit sera inférieure à R parce qu’en parallèle sur R, il y aura la réactance de L’ ou de C’ ; ainsi la tension sera inférieure à 150V et diminuera très rapidement au fur et à mesure que l’on va s’éloigner de la fréquence de résonance.

Si dans le circuit de la figure 2a, on change la valeur de R, par exemple en la diminuant à 75kΩ, la tension aux bornes du circuit résonnant ne sera plus que de 75V, c'est-à-dire qu’elle a diminué de moitié par rapport au cas précédent. La courbe de résonnance est plus basse que la première. Dans les deux cas cependant, la fréquence de résonnance est toujours 53kHz, car fo ne dépend que de L et de C, mais pas de R.

De la valeur de R dépend au contraire le facteur de qualité Q du circuit résonnant (qu’on appelle aussi coefficient de qualité, ou coefficient de surtension) et qui est défini comme étant le rapport de R et de X, et dont le symbole est Q.

Dans le cas de l’exemple, on a :

Q = R/Xo = (150kΩ)/(1,5kΩ) = 100

Dans le cas où R = 75kΩ on aurait Q = 75 / 1,5 = 50. Plus la valeur de R est élevée, plus la valeur de Q est grande et plus la courbe de résonnance est pointue, comme on peut le voir à la figure 2b.

La définition de la fréquence de coupure, vue dans la précédente leçon peut être appliquée à la courbe de la figure 2. On peut ainsi définir les points 1 et 2 (fréquences f1 et f2), pour lesquels l’amplitude de la courbe se réduit à 70,7 % de l’amplitude maximum correspondant à la fréquence de résonance (point 3).

Dans le cas d’un circuit résonnant, les fréquences de coupure sont toujours très voisines de la fréquence de résonance ; pour cette raison on préfère donner comme valeurs caractéristiques du circuit, la bande passante B (égale comme nous l’avons vu à la différence f2 – f1) ainsi que la fréquence de résonnance fo au lieu des valeurs seules de f1 et f2 comme on le faisait pour les circuits apériodiques.

La bande passante est étroitement liée au facteur de qualité Q du circuit, et sa valeur est donnée tout simplement par la formule

B = fo/Q

où B est exprimé dans les mêmes unités que fo.

Dans l’exemple, on a fo = 53kHz, la bande passante sera pour un Q = 100 de :

B = 53/100 = 0,53kHz

Pour un Q = 50 :

B = 53/50 = 1,06kHz

On voit ainsi qu’en diminuant la valeur de Q on augmente la bande passante, mais on diminue l’amplitude de la courbe de résonnance. Ainsi, pour avoir une large bande passante, on doit avoir une faible valeur de Q, ce qui s’obtient avec une faible valeur de R, ou comme on dit en "amortissant beaucoup" le circuit résonnant. Si l’on veut au contraire obtenir une bande passante étroite, il faut que le circuit soit très sélectif, il faut donc l’amortir très peu, ce qui signifie utiliser une valeur élevée de R, et avoir ainsi une valeur élevée de Q.

Après ce bref rappel sur le fonctionnement d’un dispositif résonnant nous pouvons revenir à l’étude de notre amplificateur sélectif de la figure 1.

1 – 1 ETAGE A CHARGE ACCORDE

Le schéma de la figure 1 peut être utilisé toutes les fois que l’on désire obtenir un amplificateur capable de sélectionner et d’amplifier une seule fréquence ou une bande étroite autour d’une fréquence donnée.

Dans la gamme des récepteurs radio, on a intérêt à utiliser des amplificateurs sélectifs de façon à pouvoir sélectionner parmi toutes les stations celle que l’on désire écouter.

Dans les récepteurs radio les amplificateurs sélectifs sont des amplificateurs H.F. qui peuvent être à fréquence fixe, c'est-à-dire accordés sur une seule fréquence, une fois pour toutes (comme, par exemple, les amplificateurs à fréquence intermédiaire) ou bien ils peuvent être à fréquence variable, de façon à permettre l’accord manuel sur la fréquence désirée (amplificateurs H.F. proprement dits).

Pour obtenir la possibilité d’un accord dans une certaine gamme de fréquence il faut évidemment que le circuit résonnant soit à accord variable, ce qui peut être obtenu en employant un condensateur variable ou bien une inductance à noyau plongeant comme nous le verrons par la suite (accord manuel).

Comme la gamme de fréquences s’étend pour un récepteur radio de quelques centaines dekHz à quelques MHz (grandes ondes, petites ondes, ondes courtes), la fréquence intermédiaire choisie pour les récepteurs à modulation d’amplitude est fixée soit entre 455kHz et 480kHz. Ainsi les bobines des circuits résonnants pourront être du type à air, sans noyau, ou avec noyau en un matériau prévu pour les fréquences radio (aggloméré de poudre de fer très fine et de certains oxydes, dont chaque grain est enrobé dans un isolant (polyfer, sirufer, etc…) ou mieux encore en matériau céramique comme le ferrite.

Le circuit résonnant est en général enfermé dans un blindage métallique relié à la masse de façon à éviter des couplages parasites avec d’autres circuits, et éventuellement des accrochages.

En ce qui concerne les transistors, on ne pourra évidemment pas utiliser les types vus jusqu’à présent, car ils devront avoir des fréquences de coupure de valeur adéquate, soit de l’ordre de 1MHz pour les amplificateurs à fréquence intermédiaire, et de quelques MHz pour les étages d’entrée du récepteur. Etant données les très faibles puissances mises en jeu dans de tels circuits, on n’utilisera évidemment pas des transistors de puissance et les calculs seront faits exclusivement au moyen des paramètres des différents types, en réservant l’emploi des courbes caractéristiques seulement pour la détermination du point de fonctionnement et le calcul des circuits de polarisation.

Pour prendre un exemple, nous allons étudier un amplificateur sélectif à un seul étage F.I. (fréquence intermédiaire) accordé par exemple sur 467kHz et utilisant un transistor SFT 319 monté en émetteur commun et couplé à un second étage identique au premier.

Avant d’examiner le schéma, il faut encore faire quelques remarques. Avant tout, il faut noter que le circuit résonnant se comporte comme une simple résistance à la fréquence de résonance, c'est-à-dire que pour cette fréquence, et pour elle seule, l’amplificateur a comme charge la résistance R placée en parallèle sur L et C et que la droite de charge dynamique n’est autre que celle qui correspond à la valeur de R.

En second lieu, il faut noter qu’en pratique la résistance R est constituée par la résistance d’entrée de l’étage suivant, et comme celle-ci est en général beaucoup plus faible que la résistance de sortie de l’étage considéré, il faut utiliser un transformateur pour coupler les deux étages si l’on désire conserver un bon gain en puissance. Le primaire d’un tel transformateur ne sera autre que l’inductance L, et le secondaire sera un autre enroulement comportant moins de spires et bobiné sur cette même inductance L.

Ainsi en pratique, le circuit peut être représenté comme sur la figure 4 où l’étage suivant est indiqué par sa seule résistance d’entrée re.

Les résistances R2, R3 et RE servent à la polarisation du transistor et à la stabilisation thermique du point de repos. Les valeurs des résistances indiquées sont telles qu’elles font travailler le transistor avec un courant de collecteur ICo de 1mA et avec une tension entre collecteur et émetteur VCEo de 6 V (recommandée par le constructeur) comme on peut le vérifier facilement d’après les caractéristiques de la figure 5.

En examinant le schéma de la figure 4 on voit que la droite de charge statique correspond à la seule valeur de RE = 1,5kΩ puisque la résistance de l’enroulement de L est de quelques ohms et peut être parfaitement négligée. Si l’on désire que le point de repos vienne en A on vérifie rapidement que R2 = 10kΩ et R3 = 2,7kΩ si la tension d’alimentation VCC est de 7,5 V.

Pour ce point de fonctionnement ; le transistor présente les caractéristiques suivantes :

Si l’on désire obtenir un gain maximum en puissance, il faudra que la droite de charge dynamique corresponde à la résistance de sortie du transistor (c'est-à-dire 29kΩ dans notre exemple) comme on peut le voir sur la figure 5.

Etant donné que la résistance d’entrée de l’étage suivant (supposé identique au premier) est de 0,8kΩ, on détermine immédiatement quel devra être le rapport de transformation n entre le nombre de spires de l’inductance L et celui de l’enroulement secondaire. En appliquant en effet, la formule vue lors de l’étude des liaisons par induction on trouve :

n = √(rs/re) = √(29/0,8) = √36,25 = 6,02 valeur que l’on arrondira en pratique à 6.

Il reste encore à déterminer les valeurs de l’inductance L et de la capacité C qui constitue le circuit résonnant. Les valeurs doivent être déterminées obligatoirement non seulement suivant la fréquence de résonance désirée, mais aussi suivant la bande passante que l’on se propose d’obtenir.

Soit le cas d’un amplificateur à fréquence intermédiaire (F.I.) d’un récepteur à modulation d’amplitude dont la F.I. soit de 467kHz (elle est quelquefois de 480kHz ou 455kHz). La bande passante doit être de 9kHz car la largeur des canaux des émetteurs à modulation d’amplitude est fixée à 9kHz.

Il faut encore se rappeler que le circuit résonnant formé par la capacité C et par l’inductance L de la figure 4 est amorti non seulement par la résistance d’entrée du transistor de l’étage suivant, mais aussi par la résistance de sortie du transistor considéré. En effet, le transistor de la figure 4 a son collecteur branché à l’extrémité inférieure du circuit résonnant tandis que l’émetteur se trouve branché à l’extrémité supérieure de ce même circuit résonnant au travers du condensateur CE et de la pile d’alimentation.

La pile présente une résistance interne extrêmement faible et le condensateur CE peut être considéré en ce qui concerne la composante alternative du courant d’émetteur (à la fréquence de 467kHz), comme une liaison de résistance négligeable. On en déduit donc que tout se passe, pour la composante alternative, comme si le transistor se trouvait branché directement en parallèle sur le circuit résonnant.

La résistance R qui amortit le circuit résonnant et qui en détermine la bande passante est donc donnée par la mise en parallèle de la résistance d’entrée re du transistor suivant (ramenée naturellement au primaire) et par la résistance de sortie rs du transistor considéré.

Si l’on se rappelle encore que pour avoir un gain maximum en puissance, il faut déterminer le rapport de transformation de telle sorte que la valeur de re ramenée au primaire soit égale à rs, on en déduit alors que la valeur de R est égale à la moitié de rs. Dans le cas de l’exemple rs = 29kΩ et R sera donc égale à 29/2 = 14,5kΩ. On doit donc obtenir une bande passante B = 9kHz avec cette valeur de R et pour fo = 467kHz.

En partant des valeurs ci-dessus, on peut déterminer L et C.

On commence tout d’abord par calculer le coefficient Q du circuit, nécessaire pour obtenir la bande passante désirée :

Q = fo/B = 467/9 = 51,88 soit 52 environ

On calcule ensuite la valeur de la réactance Xo :

Xo = R/Q = 14,5/52 = 0,279kΩ

Ensuite, on détermine les valeurs de L et C à l’aide des formules suivantes où L est exprimée en mH, C en nF, Xo en kΩ et fo en kHz.

L = (159 x Xo)/fo = (159 x 0,279)/467 = 0,095 mH

C = 159/(fo x Xo ) = 159/(467 x 0,279) = 1,22nF

On peut vérifier rapidement qu’avec de telles valeurs on obtient bien la fréquence de résonnance voulue. En effet :

fo = 159/√(L x C) = 159/√(0,095 x 1,22) = 159/√0,116 = 159/0,34 = 467kHz

La valeur de C ainsi calculée est celle qui est nécessaire pour que l’inductance L résonne à 467kHz ; en pratique, cependant, on prendra une capacité un peu plus faible pour la raison suivante : en examinant la figure 4, on voit que la capacité de sortie cs (38pF dans notre exemple) du transistor se trouve en parallèle sur le circuit résonnant pour la même raison que tout à l’heure, où l’on avait vu que la résistance de sortie se trouvait en parallèle sur le C.O. (abréviation de "circuit oscillant").

D’autre part, la capacité d’entrée du transistor suivant, ramenée au primaire se trouve elle aussi en parallèle sur L. Dans le cas de l’exemple, ce = 870pF. Comme le rapport de transformation est 6, la valeur de c'e ramenée au primaire est :

c'e  = ce /n2 = 870/62 = 870/36 = 24pF environ

En parallèle sur L, il y a encore la capacité par rapport à la masse des différentes connexions et la capacité répartie du bobinage lui-même, que l’on peut évaluer pour l’ensemble à cp = 18pF environ.

La capacité parasite totale est donc :

Ct = cs + c'e + cp = 38 + 24 + 18 = 80pF

La capacité à placer sur L devra donc avoir pour valeur :

C’ = C – Ct = 1.220 – 80 = 1140pF (= 1,14nF)

Comme les capacités de sortie et d’entrée peuvent varier d’un transistor à l’autre et que la capacité parasite ne peut être déterminée avec certitude, il est indispensable qu’en pratique on puisse régler la valeur de la capacité ou de l’inductance pour pouvoir accorder exactement le circuit sur la fréquence voulue. On utilise en général une self à noyau réglable, et plus rarement une capacité variable.

Nous étudierons dans la prochaine leçon, le comportement d’un circuit réel.


RÉPONSES AUX EXERCICES DE RÉVISION SUR LA 22ème LEÇON THÉORIQUE

1° - On doit utiliser, au minimum, un générateur basse fréquence (s’il s’agit d’un amplificateur BF), un microampèremètre d’entrée et un voltmètre de sortie.

2° - Pendant le relevé de la courbe de réponse, on doit maintenir constante la valeur du courant d’entrée Ie de l’amplificateur (d’où l’utilité du microampèremètre d’entrée).

3° - La courbe de réponse exprime comment varie l’amplitude du signal de sortie (ou le gain en courant) en fonction de la fréquence).

4° - On appelle fréquences de coupures d’un amplificateur, les deux fréquences (une inférieure, l’autre supérieure) pour lesquelles le gain se réduit à 70,7 % de la valeur qu’il avait pour les fréquences moyennes.

5° - La bande passante d’un amplificateur est définie comme étant la gamme de fréquences comprises entre les fréquences de coupure.

6° - La fréquence de coupure supérieure d’un étage, dépend de la fréquence de coupure propre du transistor utilisé et lui est égale en général.

7° - La fréquence de coupure inférieure d’un étage à liaison par capacité dépend de la valeur de la capacité de liaison et est d’autant plus faible que la valeur de la capacité est plus élevée.

8° - Dans le cas d’un étage à couplage par induction, la fréquence de coupure inférieure dépend de l’inductance du primaire du transformateur et elle est d’autant plus faible que cette inductance est plus grande.

9° - Quand un amplificateur est constitué par plusieurs étages identiques, la bande passante résultante est toujours plus réduite que celle correspondant à un seul étage.


EXERCICES DE RÉVISION SUR LA 23ème LEÇON THÉORIQUE

1° - De quoi dépend la fréquence de résonance d’un circuit ?

2° - A quoi est équivalent un circuit résonnant, constitué d’une capacité, d’une self et d’une résistance en parallèle, pour la fréquence de résonnance ?

3° - Comment doit-être un circuit résonnant pour que sa bande passante soit étroite ?

4° - Quelles sont les valeurs courantes utilisées pour les fréquences intermédiaires dans les récepteurs AM ?

5° - Donner la formule qui permet de calculer la fréquence de résonance fo en Hertz lorsque la self est exprimée en Henry et la capacité en microfarads ?

6° - Calculer la fréquence de résonance d’un circuit dont la self L = 6,5 mH et la capacité C = 400pF.

7° - Quelle sera la valeur du coefficient de surtension Q lorsque : R = 0,750 MΩ et Xo = 1,5kΩ ?

8° - Calculer la bande passante d’un circuit dont le coefficient Q = 75 et pour lequel la fréquence de résonance est fo = 100kHz

9° - Si l’on désire que la bande passante du circuit ci-dessus soit trois fois plus grande, que doit-on faire ?

Fin de la leçon 23


LECON 24

1-CIRCUITS REELS

Dans les considérations faites jusqu’à présent, on a supposé que l’inductance du circuit ne présentait aucune résistance au passage du courant. Or en fait c’est faux, car la bobine est réalisée à l’aide d’un fil qui a sa propre résistance électrique.

À ce propos il faut signaler que la résistance présentée par un conducteur au passage d’un courant alternatif est toujours plus élevée que la résistance présentée à un courant continu, telle qu’on peut la mesurer avec un ohmmètre.

Ceci est dû à ce que l’on appelle Effet Pelliculaire ou Effet de Peau : le courant alternatif ne se répartit pas de manière uniforme dans toute la section du conducteur comme le fait un courant continu, mais il a tendance à se concentrer à la superficie. De cette manière, la région centrale du conducteur n’est pas parcourue par le courant alternatif, et tout se passe comme si le conducteur n’était composé que de la seule région extérieure (d’où le nom de "peau"). La section utile au passage du courant est donc réduite et sa résistance est ainsi plus élevée que celle offerte au passage d’un courant continu.

"L’effet de peau" dépend de la fréquence du courant (plus celle-ci est élevée plus la section utile du conducteur se réduit) et aussi de la section du conducteur (le phénomène est plus accentué dans les fils de grosse section que les fils petits).

Tandis que pour les fréquences BF cet effet est pratiquement négligeable, il devient prépondérant en HF et il faut absolument en tenir compte, car la résistance devient 10 fois plus grande (ou même plus) que celle mesurée en courant continu.

Pour donner une idée plus précise de l’accroissement de la résistance d’un conducteur lorsque la fréquence augmente, je vous ai reporté à la figure 1 différentes courbes relatives à des conducteurs de section différente.

Considérons par exemple un conducteur en cuivre de section S = 1mm2. Sur la courbe.S = 1mm2 de la figure 1, nous voyons que pour f = 166kHz, Rf/Ro = 2. Ceci signifie qu’à la fréquence 166kHz, la résistance Rf du conducteur considéré est deux fois plus grande que la résistance Ro en courant continu.

Si l’on augmente la fréquence, le rapport Rf / Ro croît. Ainsi à 5,42MHz il est égal à 10. Ceci signifie donc, qu’à cette fréquence la résistance Rf est dix fois plus grande qu’en courant continu.

Ainsi, un conducteur de 1mm2 de section et de 1 m de long a une résistance R0 = 17,8mΩ en courant continu. A la fréquence 166kHz, la résistance a doublé et est devenue Rf = 35,6mΩ et à 5,42MHz, elle est de 178mΩ.

Si l’on examine par contre un conducteur ayant une section de 0,1mm2 (courbe repérée 0,1mm2) on voit que sa résistance reste pratiquement constante jusqu’à 166kHz environ. Pour des fréquences plus élevées, vers 1,66MHz sa valeur a doublé. Par contre, pour un conducteur de section 0,01mm2, la valeur de sa résistance ne double que lorsque la fréquence atteint 16,6MHz.

On en conclut donc que plus la section est faible plus on peut "monter" en fréquence avant que la résistance ne double. De cette constatation est née l’idée d’utiliser, pour les fréquences élevées, des conducteurs formés de plusieurs fils fins au lieu de prendre du fil de forte section. Par exemple, au lieu d’utiliser un conducteur de section 0,1mm2 formé par un seul fil, il est préférable de prendre un conducteur formé de 10 fils ayant chacun une section de 0,01mm2.

L’avantage que l’on peut obtenir avec un tel conducteur est clairement représenté sur la figure 1. La courbe en trait plein (S = 0,1mm2) se trouve au-dessus de la courbe en traits pointillés (S = 10 x 0,01mm2) correspondant au fil de litz jusque vers 2MHz environ. Ceci signifie donc que pour des fréquences inférieures à 2MHz, le fil de litz est préférable au fil à un seul conducteur (de section totale équivalente). Par contre au-dessus de 2MHz l’augmentation de la résistance dûe au fil de litz est plus rapide que pour un fil à un seul conducteur. C’est pour cette raison que dans les récepteurs on utilise surtout du fil de litz pour les bobines grandes ondes et petites ondes ainsi que pour les transformateurs F.I. (fréquences inférieures à 2MHz) et que l’on utilise de nouveau du fil plein pour des bobines ondes courtes (fréquences supérieures à 2MHz).

Si l’on veut tenir compte de la résistance de la bobine utilisée pour le C.O. (circuit oscillant), on peut procéder de la même manière que lors de l’étude de l’étage de puissance avec transformateur de sortie. On suppose que la bobine réelle est équivalente à une bobine idéale (c’est-à-dire sans résistance) qu’elle a même inductance que la bobine réelle et qu’en série il y a une résistance Rf, de valeur égale à la résistance qu’elle a à la fréquence de travail.

Ainsi le circuit résonnant réel de la figure 2a, peut être considéré comme étant équivalent au circuit de la figure 2b, où la bobine est idéale, mais où il y a en série une résistance Rf.

Reprenons l’exemple du C.O. de la figure 4 (Théorie 23), où C = 1,22nF et L = 0,095mH. Supposons qu’à la fréquence de travail (467kHz) la résistance Rf = 2Ω (valeur qui correspond à celle mesurée en courant continu, par exemple à l’aide d’un ohmmètre, augmentée dans le rapport Rf / Ro d’après le graphique de la figure 1).

On démontre qu’un circuit résonnant du type de la figure 2b, (c’est-à-dire du type série, en ce sens que la self et la résistance sont en série), a un coefficient de surtension Q :

Q = Xo/Rf

où Xo est la réactance de la self à la fréquence de résonance, qui doit être exprimée dans les mêmes unités que Rf.

Dans l’exemple nous avons Xo = 0,279kΩ et Rf = 2Ω. D’où :

Q = 279/2 = 139,5

Le circuit réel de la figure 2a sera donc caractérisé, non seulement par une valeur de capacité et de self, mais aussi par une valeur de Qo déterminée par la résistance de la bobine. Le coefficient de qualité est d’autant plus élevé que la résistance Rf est plus faible.

La même valeur de Qo peut être obtenue en prenant un circuit idéal et en l’amortissant avec une résistance Rp placée en parallèle à ses bornes comme l’indique la figure 2c. On démontre alors que la valeur de Rp doit être Qo fois la valeur de Rf.

Dans le cas considéré, Rp devra avoir comme valeur :

Rp = Qo2 x Rf = (139,5)2 x 2 = 19.460,25 x 2 = 38.920,50Ω soit environ 38,92kΩ.

En effet, si l’on reprend la formule vue précédemment, à propos du circuit de la figure 2 (Théorie 23), on trouve :

Q = R/Xo = 38,92/0,279 = 139,5

On peut donc en conclure qu’un circuit résonnant réalisé avec une bobine réelle se comporte de la même manière qu’un circuit résonnant idéal amorti par une résistance Rp placée en parallèle sur le circuit même. Cet amortissement est d’autant plus fort (c’est-à-dire que Rp est faible) que Rf est élevée. En d’autres termes, nous dirons, que l’amortissement est d’autant plus fort que le coefficient de surtension du circuit est plus faible.

Dans tous les exemples vus jusqu’à maintenant, où l’on considérait des C.O. idéaux, on tient compte en pratique de ce que ces circuits ne le sont pas, en considérant qu’en parallèle sur la résistance d’amortissement R vient se placer la résistance Rp que l’on vient de voir, ce qui accroît encore l’amortissement du C.O. (Circuit Oscillant).

1 – 1 GAIN EN PUISSANCE – NEUTRODYNAGE

Dans les amplificateurs HF ou FI tels que ceux de la figure 4 (Théorie 23), il n’y a pas que le gain en courant ou en tension qui soit intéressant, il y a aussi le gain en puissance. Connaissant les valeurs de la transconductance, des résistances d’entrée et de sortie, le gain en puissance est donné par la formule suivante :

Gp = (gm2 x re x rs)/4

où re et rs doivent être exprimés en kΩ si la transconductance gm est donné en mA/V

Si gm = 35 mA/V, re = 0,8 kΩ et rs = 29 kΩ, le gain en puissance sera :

Gp = (352 x 0,8 x 29)/4 = (1225 x 0,8 x 29)/4 = 28.420/4 = 7.105

Il faut encore remarquer que le gain calculé ci-dessus est le gain maximum théorique, valable dans le cas idéal où la self est sans résistance.

En pratique, à cause de la résistance de la bobine, on ne peut obtenir un gain de puissance aussi élevé, mais on pourra s’en rapprocher d’autant plus que le Qo du C.O. sera plus élevé.

Une autre raison fait qu’en pratique le gain en puissance est inférieur à celui calculé : c’est la présence de la capacité de la jonction collecteur-base. Pour mettre en évidence cette capacité, on a dessiné en pointillés sur la figure 3 un condensateur CCB placé entre collecteur et base. On remarque immédiatement qu’au travers de CCB une partie du signal (bien que faible) retourne de la sortie du transistor (collecteur) à l’entrée (base) en se superposant au signal de commande. En raisonnant en courants on dira qu’au courant de commande ie vient se superposer le courant ir qui provient du collecteur et se dirige vers la base à travers CCB.

Le courant de base résultant est en général plus faible que le courant de commande, car ie et ir sont souvent en opposition de phase ; mais il peut arriver aussi que les deux courants soient en phase, auquel cas, le courant de base est plus grand que le courant de commande.

Dans le premier cas, la puissance de sortie sera plus faible que s’il n’y avait pas de capacité CCB ; dans le second cas au contraire, elle sera plus grande et si ir est suffisamment élevé, on peut avoir un accrochage et l’étage ne pourra plus fonctionner comme amplificateur.

Afin d’éviter de tels inconvénients, provoqués par la présence de CCB, il ne reste plus qu’à neutraliser les effets dûs à ir en faisant parvenir à la base un second courant in de phase opposée à celle de ir. Ceci s’obtient en pratique en branchant un condensateur de neutrodynage Cn entre la base et le secondaire du transformateur.

Si dans le secondaire du transformateur circule un courant en opposition de phase par rapport au courant du primaire, il est évident que le courant in sera lui aussi en opposition de phase avec ir ; en réglant convenablement la valeur de Cn, on fera en sorte que les deux courants se neutralisent mutuellement et on évitera ainsi les inconvénients décrits ci-dessus.

Il faut encore remarquer que le neutrodynage est nécessaire avec les transistors alliés car dans ceux-ci, la capacité CCB est de l’ordre d’une dizaine de pF et que son effet est très sensible. Dans les transistors à diffusion ("drift") la capacité CCB est notablement plus faible, et dans la plupart des cas il n’est pas nécessaire de recourir au neutrodynage.

1 – 2 LIAISON PAR TRANSFORMATEUR A PRIMAIRE ET SECONDAIRE ACCORDÉS

Un autre type de transformateur est utilisé dans la liaison entre étages F.I. Dans ces transformateurs, le primaire et le secondaire sont simultanément accordés sur la fréquence de travail. Le schéma de l’étage amplificateur se présente alors comme sur la figure 4 où l’on peut voir clairement que le primaire est constitué par un C.O. formé de Lp et de Cp et que le secondaire est constitué lui aussi par un C.O. formé de Ls et de Cs, tous les deux accordés sur la même fréquence.

Avant de commencer l’étude du circuit de la figure 5, il est bon de décrire rapidement comment se présentent en pratique de tels transformateurs et quelles différences il y a par rapport au transformateur des schémas précédents.

Le transformateur comme celui de la figure 4 (Théorique 23), est réalisé sur un support isolant de forme cylindrique. Sur l’enroulement primaire, est enroulé directement l’enroulement secondaire comme le montre la figure 5. A l’intérieur du support se visse un noyau ferromagnétique qui en pénétrant plus ou moins permet d’accorder la self exactement sur la fréquence désirée.

Le transformateur du schéma de la figure 4 est au contraire constitué de 2 enroulements réalisés sur le même support cylindrique, mais complètement séparés l’un de l’autre (figure 5b). Le réglage de la fréquence de résonance des deux circuits accordés est réalisé maintenant à l’aide de deux noyaux l’un placé en haut (primaire) et l’autre en bas (secondaire).

Les deux transformateurs sont accordés à l’aide des capacités et enfermés dans un boitier métallique relié à la masse.

Après cette brève parenthèse d’ordre technologique, nous pouvons commencer l’étude du fonctionnement du circuit de la figure 4 dont la particularité essentielle réside dans la forme de la courbe de résonance et donc dans l’aptitude de l’étage à sélectionner le signal à la fréquence désirée parmi toutes les fréquences reçues. La détermination de la courbe de résonance est faite de la même manière que celle de la figure 2 (Théorique 23) relative à un seul circuit. Il suffit pour cela de faire circuler dans le primaire un courant de valeur constante et de fréquence variable, de se placer autour de la fréquence de résonance sur laquelle sont accordés primaire et secondaire et de mesurer la valeur de la tension aux bornes du secondaire comme le montre la figure 6.

Si l’on suppose que le primaire et le secondaire sont respectivement amortis par Rp et Rs de façon à ce que les deux circuits aient la même valeur de coefficient de surtension Q, on trouve des courbes différentes selon le couplage qui existe entre les deux bobines, c’est-à-dire selon la distance entre les deux bobines de la figure 5b.

Si les deux bobines sont très éloignées, la courbe obtenue est assez semblable à celle de la figure 2 (Théorique 23) ; lorsque l’on rapproche les deux bobines (c’est-à-dire lorsque l’on augmente leur couplage) la tension au secondaire augmente ; on trouve d’autre part que la courbe devient de plus en plus large au fur et à mesure que l’on augmente le couplage (c’est-à-dire que l’on rapproche les bobines).

En rapprochant encore les deux bobines, on trouve qu’à un certain moment l’amplitude de la courbe ne croît plus (figure 7) et que le maximum de la tension n’a plus lieu pour la fréquence de résonance fo mais pour deux fréquences équidistantes, l’une supérieure l’autre inférieure à la fréquence de résonance.

On définit le couplage critique comme étant celui pour lequel on obtient la tension maximum possible au secondaire à la fréquence de résonance (courbe 3 de la figure 7).

On dit que le couplage est sous-critique lorsque la tension au secondaire est inférieure à la valeur maximum possible (courbes 1 et 2). On dit que le couplage est sur-critique lorsque la tension au secondaire atteint la valeur maximum, pas à la fréquence de résonance, mais pour deux fréquences différentes de celle-ci, c’est-à-dire lorsque la courbe présente deux bosses et un creux à la fréquence de résonance (courbes 4 et 5).

Dans les transformateurs utilisés en pratique, on choisit le couplage critique ou un peu supérieur à celui-ci, de façon à ce que le creux ne soit pas trop prononcé. De cette façon on a l’avantage d’obtenir le maximum de gain possible (un couplage inférieur au couplage critique donne en effet une tension plus faible à la résonance) et une bande passante qui est environ une fois et demi celle d’un circuit accordé simple ayant le même coefficient Q (un couplage supérieur au couplage critique donnerait une bande passante encore plus grande, mais présenterait l’inconvénient du creux).

Dans le cas de l’étage de la figure 4, le transformateur sera réalisé de façon à ce que le couplage soit critique en plaçant de façon appropriée les deux bobines sur le support cylindrique. Dans ces conditions, le rapport entre les spires du primaire et du secondaire, c’est-à-dire n, sera encore donné par la formule n = √(rs⁄re) comme dans le cas de la figure 4 (Théorique 23).

Pour obtenir encore une bande passante B = 9kHz comme auparavant, les valeurs de Qp du primaire et de Qs du secondaire devront être toutes les deux égales et seront données par la formule :

Q = (fo x 1,41)/B = (467 x 1,41)/9 = 658,47/9 = 73,16

En indiquant par Xop et Xos les réactances à la résonance du primaire et du secondaire, on trouve : (avec rs = 29kΩ et re = 0,8kΩ)

Xop = rs/Q = 29/73,16 = 0,396kΩ

Xos = re/Q = 0,8/73,16 = 0,0109kΩ

Les formules ci-dessus dérivent du fait que dans le cas de la figure 4, le primaire n’est amorti que par la résistance de sortie rs du transistor, tandis que le secondaire n’est amorti que par la résistance d’entrée re du transistor de l’étage suivant.

Les valeurs des selfs, des capacités primaires et secondaires, indiquées par Lp , Cp, Ls et Cs sont données, comme dans le cas du schéma de la figure 4 par les formules suivantes :

Lp = (159 x Xop)/fo = (159 x 0,396)/467 = 0,1348 mH

Cp = 159/(fo x Xop ) = 159/(467 x 0,396) = 0,859nF

Ls = (159 x Xos)/fo = (159 x 0,0109)/467 = 0,0037mH

Cs = 159/(fo x Xos ) = 159/(467 x 0,0109) = 3,12nF

Naturellement il faudra prendre des capacités C’p = Cp – Cs = 859 – 38 = 821 pF et C’s = Cs – Ce = 3120 – 870 = 2250pF afin de tenir compte des capacités des transistors.

Pour comparer directement les avantages obtenus avec le circuit de la figure 4 par rapport à celui de la figure 4 (Théorique 23), je vous ai reporté à la figure 8, les courbes de sélectivité calculées pour ces deux circuits.

Comme vous pouvez le voir, les bandes passantes sont égales dans les deux cas, mais la courbe correspondant au cas du transformateur à primaire et secondaire accordés est plus intéressante car elle possède des flancs plus raides, ce qui indique qu’elle est plus apte à atténuer les fréquences en dehors de la bande passante.

Ainsi par exemple, si l’on prend la fréquence de 9kHz au-dessus et en dessous de fo (ce qui représente les porteuses des stations adjacentes à celle reçue), on voit que pour le circuit de la figure 4, elle sera plus atténuée à la sortie de l’amplificateur (24,1 %) que dans le cas du circuit de la figure 4 (Théorique 23) (44,7 %).

D’autre part, dans la bande passante, la courbe relative à l’étage de la figure 4 est plus "rectangulaire". Ceci indique que le circuit amplifie beaucoup plus uniformément les signaux dans la bande passante.

En conclusion, le circuit de la figure 4 est de beaucoup préférable à celui de la figure 4 (Théorique 23). C’est pour cela qu’il est surtout utilisé.

1 – 3 TRANSFORMATEURS À PRISE INTERMEDIAIRE

Comme on l’a vu avec les calculs ci-dessus, les valeurs des capacités utilisées dans les circuits accordés sont relativement élevées et en général on ne peut les placer à l’intérieur des blindages renfermant le transformateur F.I.

Pour réduire la valeur de la capacité (et d’autre part pour permettre d’utiliser des capacités de même valeur au primaire et au secondaire dans le cas d’un circuit du type de la figure 4) on utilise l’artifice de prolonger les enroulements et de brancher les condensateurs aux extrémités de ceux-ci comme le montre la figure 9 (schéma de la figure 4 Théorique 23 modifié).

Comme on le voit sur la figure, le condensateur d’accord C est branché non plus entre collecteur (point 2) et l’alimentation du collecteur (point 1) mais entre le point 1 et le point 3 qui représente l’extrémité du prolongement du bobinage.

On démontre alors que si l’on indique par m le rapport entre le nombre total de spires comprises entre 1 et 3 et le nombre de celles-ci comprises entre 1 et 2 (et qui sont nécessaires pour réaliser la valeur de la self calculée auparavant) la valeur de C de la capacité à brancher entre les points 1 et 3 est donnée par la formule :

C = C'/m2

Supposons que nous prolongions l’enroulement de façon à ce que le nombre total de spires soit 3 fois celui compris entre 1 et 2 (m = 3) ; la valeur de la capacité va se réduire de la valeur C’ = 1140 pF à :

C = 1140/(3)2 = 1140/9 = 126pF environ

Si l’on voulait réduire la capacité de 1140pF à 220pF (valeur normalisée pour les condensateurs mica et au polystyrène) le rapport m devrait avoir pour valeur :

m = √(1140/220) = √5,18 = 2,27 environ

Ce qui vient d’être dit, en ce qui concerne la figure 9, reste évidemment valable pour les circuits de la figure 4, où l’on obtient comme avantage, la possibilité d’utiliser les mêmes valeurs des capacités d’accord pour le primaire et le secondaire.


EXERCICES DE RÉVISION SUR LA 24ème LEÇON THÉORIQUE

1 – Quel est le coefficient de surtension d’un circuit dans lequel Xo = 0,300 kΩ et où Rf = 5Ω

2 – Quelle est alors la valeur équivalente de la résistance Rp ?

3 – Comment peut-on exprimer Rp en fonction de Rf, de la self L et de la pulsation de résonance ω ?

On rappelle que ωo = 2πfo

4 – A l’aide de la formule calculée ci-dessus, déterminer la valeur de Rp sachant que L = 2 henrys :

fo = 300Hz et Rf = 100Ω

5 – Qu’appelle- t-on "effet de peau" ou "effet pelliculaire" ?

6 - Comment est constitué un fil de litz et quels sont ses avantages par rapport à un conducteur normal ?

7 – Quelles sont les différences technologiques entre un transformateur constitué par un seul primaire accordé et un dont le secondaire est aussi accordé ?

8 – Qu’appelle-t-on couplage critique ?

9 – Quel aspect présente la courbe de résonance quand le couplage est supérieur au couplage critique ?


RÉPONSES AUX EXERCICES DE RÉVISION SUR LA 23ème LEÇON THÉORIQUE

1 – La fréquence de résonance d’un circuit dépend uniquement des valeurs de l’inductance et de la capacité qui le constituent.

2 – Un circuit résonnant formé d’une capacité, d’une inductance et d’une résistance en parallèle est équivalent, à la fréquence de résonance, à sa seule résistance.

3 – Pour que la bande passante d’un circuit résonnant soit étroite, il faut que ce dernier soit peu amorti, c’est-à-dire que sa résistance en parallèle doit être de valeur très élevée.

4 – Dans les récepteurs AM, les fréquences intermédiaires sont en général de 467kHz, 480kHz ou 455kHz.

5 – La fréquence de résonance fo est :

fo = 159/√(L x C)

6 – fo = 100kHz environ

7 – R = 0,750 MΩ = 750 kΩ

d’où Q = 750/1,5 = 500

8 – B = fo/Q = 100/75 = 1,33kHz

9 – Pour augmenter la bande passante de trois, il faut diminuer le coefficient de qualité de trois, c’est-à-dire amortir le circuit.

On veut B = 1,33 x 3 = 4 environ

Le coefficient Q doit donc être

Q = fo/B = 100/4 = 25 (= 75/3 )

Fin de la leçon 24


LECON 25

1 – OSCILLATEURS SINUSOÏDAUX

Tous les circuits à transistors étudiés jusqu’à maintenant, présentaient une propriété commune qui était de délivrer à la sortie un signal, d’une certaine puissance (plus ou moins grande selon le type de transistor utilisé) quand on appliquait à l’entrée, et seulement à ce moment-là, un signal de commande.

Le nom d’Amplificateur donné à ces circuits provient du fait qu’ils sont capables, si on leur applique à l’entrée un certain signal, de délivrer à leur sortie un signal de puissance plus grande, et plus ou moins fidèle d’ailleurs.

Par contre, il faut noter que les amplificateurs ne délivrent aucun signal à leur sortie si aucun signal n’est appliqué à leur entrée.

Nous allons voir aujourd’hui d’autres circuits, capables eux de délivrer un signal à leurs bornes de sortie, même si aucun signal n’était appliqué à leur entrée. Ces circuits sont appelés OSCILLATEURS en ce sens qu’ils peuvent produire des oscillations par eux-mêmes. Le signal de sortie pourra être simple lorsqu’il s’agira d’un signal sinusoïdal. Il pourra être aussi beaucoup plus complexe, comme dans le cas d’ondes rectangulaires ; mais de toute façon, ces signaux sont périodiques car ils se répètent avec une certaine période.

Nous étudierons les Oscillateurs Sinusoïdaux. Par contre, les Oscillateurs non sinusoïdaux ne seront pas pris en considération car ils ne sont jamais utilisés dans les récepteurs radio.

Comme les amplificateurs, les oscillateurs peuvent être classés selon les caractéristiques du signal délivré ou selon celles du circuit utilisé.

Comme nous l’avons vu en son temps, une onde sinusoïdale peut être déterminée par sa fréquence et par son amplitude. Les oscillateurs pourront être classés selon la fréquence du signal produit et selon l’amplitude de celui-ci ou mieux, selon la puissance du signal, puisque cette dernière dépend directement de l’amplitude du signal.

Les fréquences qui intéressent les récepteurs, peuvent être divisées en deux bandes : la bande BF (ou de fréquences acoustiques) comprise entre 20Hz et 20kHz (sons audibles par l’oreille humaine) et la bande des Radio-fréquences, qui s’étend de quelques dizaines dekHz à quelques dizaines deMHz, comprenant la gamme utilisée pour les transmissions en modulation d’amplitude, c’est-à-dire grandes ondes (GO), les petites ondes ou moyennes (PO) et les ondes courtes (OC).

Les oscillateurs pourront être : du type BF ou du type HF.

Les oscillateurs du premier type produisent des signaux sinusoïdaux de fréquence acoustique et d’amplitude constante (figure 1a).

De tels signaux amplifiés par des amplificateurs BF donneront dans le haut-parleur, un son acoustique de tonalité fixe (d’une seule fréquence).

Les oscillateurs BF peuvent encore être subdivisés en oscillateurs à une seule fréquence fixe ou à plusieurs fréquences fixes selon qu’ils peuvent délivrer une ou plusieurs fréquences prédéterminées et en oscillateurs à fréquence variable s’ils peuvent couvrir toute, ou une partie de la gamme acoustique.

On peut de la même manière, subdiviser les oscillateurs HF. Ceux-ci pourront aussi être catalogués en outre en oscillateurs non modulés s’ils délivrent une onde sinusoïdale (HF bien entendu) d’amplitude constante (figure 1b) c’est-à-dire non modulée, et en oscillateurs modulés quand l’amplitude de l’onde varie périodiquement selon une forme encore sinusoïdale mais de fréquence acoustique (figure 1c).

Ce dernier type de signal, appliqué à l’antenne d’un récepteur, donnera encore une note acoustique dans le haut-parleur du récepteur.

Les oscillateurs HF sont indispensables pour le réglage et la mise au point des circuits HF et FI des récepteurs.

Suivant le type du circuit utilisé, les oscillateurs peuvent être classés en deux catégories différentes : les oscillateurs à inductance et capacité (oscillateurs LC) lorsque la fréquence du signal est déterminée par la fréquence de résonance d’un circuit résonnant formé par une self et une capacité, les oscillateurs à résistance et capacité (oscillateurs RC), lorsque la fréquence du signal est déterminée par les caractéristiques d’un réseau composé de plusieurs résistances et capacités.

Disons tout de suite, pour fixer les idées, que les oscillateurs HF sont en grande majorité du type à inductance et capacité ; étant donné les valeurs élevées de la fréquence et les faibles valeurs des selfs, ces dernières sont en général bobinées sur des mandrins en matériaux adaptés à la HF ou tout simplement "en l’air".

Les oscillateurs BF peuvent être du type LC ou RC. Dans le premier cas, étant donné les faibles valeurs de la fréquence et les valeurs élevées de l’inductance, les selfs seront réalisées sur des mandrins avec noyaux de ferrite ou des tôles.

Les valeurs élevées nécessaires pour les capacités ne permettent pas l’utilisation de condensateurs variables ; ainsi les circuits LC sont surtout utilisés dans le cas d’oscillateurs à fréquence fixe.

Lorsque l’on a besoin d’oscillateurs à fréquence variable, on préfère utiliser le type RC où les capacités nécessaires sont de faible valeur (donc on peut employer des condensateurs variables) et les résistances en général de fortes valeurs (mais ceci n’est pas un inconvénient, ni du point de vue Technologique ni du point de vue économique).

Une classification ultérieure des oscillateurs LC et RC sera faite en se basant sur le nombre de transistors utilisés et le montage adopté (en général en base commune ou en émetteur commun) A ce propos, disons tout de suite que pour les oscillateurs LC on peut utiliser l’un des deux montages au choix, tandis que pour les oscillateurs RC on n’utilise que le montage en émetteur commun.

Nous allons voir maintenant comment fonctionnent les oscillateurs et en particulier les oscillateurs LC, puisque c’est le type le plus généralisé et qu’en faisant varier les valeurs des composants (inductance et capacité), on peut couvrir soit la gamme acoustique, soit la gamme HF.

Je vous rappelle que le terme d’oscillateur est synonyme de générateur ; on peut donc parler indifféremment d’oscillateurs BF et HF ou de générateurs BF et HF. Ceci n’est pas valable, par contre avec la terminologie américaine, pour laquelle oscillateur> signifie oscillateur BF ou HF non modulé, tandis que générateur, signifie seulement les oscillateurs HF en général et modulés en particulier.

2 – PRINCIPE DE FONCTIONNEMENT D’UN OSCILLATEUR SINUSOÏDAL

Pour étudier le fonctionnement d’un oscillateur sinusoïdal, il convient de partir du schéma d’un amplificateur sélectif, c’est-à-dire dans lequel la charge est constituée par un circuit LC résonnant à la fréquence fo (voir leçon précédente). Le schéma de cet amplificateur devra toutefois être modifié comme indiqué en figure 2 et, pour le moment, les inverseurs D1 (dans le circuit de la base) et D2 (dans le circuit de sortie du secondaire) se trouvent tous les deux sur la position 1.

Dans ces conditions, l’entrée de l’amplificateur est reliée au générateur qui est supposé délivrer un signal sinusoïdal de même fréquence que celle sur laquelle est accordé le circuit LC. Le secondaire du circuit résonnant est relié (par l’intermédiaire de la résistance réglable R4) aux bornes de la résistance de charge Re dont la valeur est exactement celle de la résistance d’entrée de ce même étage amplificateur (nous verrons bientôt pourquoi ce choix de Re).

En réglant la résistance variable R1, on peut régler le courant de commande de l’amplificateur ie, qui pendant l’alternance négative du signal délivré par le générateur circulera dans le circuit de base selon la direction de la flèche ; entre la base et la masse apparaîtra la tension d’entrée ve.

On peut régler maintenant la résistance R4 de façon qu’il circule dans la résistance de charge Re un courant iu de même intensité que le courant de commande ie. Ainsi la tension vu qui va apparaître aux bornes de Re sera égale à la tension de commande ve puisque l’on a supposé que Re avait précisément la valeur de la résistance d’entrée de l’étage.

Il faut remarquer encore, que le courant iu qui circule dans Re a le même sens que le courant ie dans le circuit de base (voir flèches figure 2) : les deux courants iu et ie sont donc en phase.

De même les tensions vu et ve sont elles aussi en phase : en effet, une première inversion de phase a lieu dans le transistor et une seconde est opérée à l’aide du transformateur de sortie : ainsi la tension aux bornes de la charge se retrouve en phase avec la tension appliquée à l’entrée de l’amplificateur.

Les phases des tensions sont indiquées d’une façon schématique à la figure 2 par des sinusoïdes qui partent vers le haut ou vers le bas ; on peut voir ainsi qu’à l’entrée et à la sortie les sinusoïdes partent toutes les deux vers le haut (c’est-à-dire qu’elles sont en phase), tandis que sur le collecteur, la sinusoïde part vers le bas (c’est-à-dire qu’elle est en opposition de phase avec les deux autres).

En conclusion, grâce à la modification apportée du circuit de l’amplificateur sélectif, il est possible d’obtenir aux bornes de la résistance de charge Re un signal identique en amplitude et en phase à celui qui est appliqué à l’entrée de l’amplificateur.

En considérant le gain de l’amplificateur, c’est-à-dire le rapport entre la tension de sortie et la tension d’entrée (vu/ve) comme vu = ve, on en déduit que le gain en tension est égal à 1 ; de même, les gains en courant et en puissance sont égaux à 1 (puisque iu = ie).

Supposons maintenant que l’on bascule rapidement et simultanément les inverseurs D1 et D2 de la position 1 à la position 2. On va s’apercevoir que le circuit "ne se soucie" nullement de cette commutation et qu’il continue à délivrer, par exemple sur le collecteur, le même signal qu’il fournissait lorsque les commutateurs étaient sur la position 1.

En effet, en regardant de plus près le schéma de la figure 2, on peut voir que le circuit de sortie est toujours fermé sur une résistance de même valeur, puisque en passant de la position 1 à la position 2, on remplace la résistance Re par la résistance d’entrée de l’étage qui a même valeur rappelons-le.

En ce qui concerne le circuit d’entrée, celui-ci est relié, non plus au générateur de signaux, mais à la sortie de l’étage. Etant donné que le signal à la sortie de l’étage était identique en amplitude et en phase à celui qui était présent à l’entrée, le transistor continue à être commandé encore par le même signal.

En d’autres termes, on peut dire que le transistor n’est pas capable de distinguer si le signal de commande lui parvient du générateur ou de son propre circuit de sortie et il ne se "soucie" donc pas si c’est le générateur qui le commande ou bien si c’est lui-même qui s’"auto-pilote".

Ainsi donc, on continue à obtenir un signal à la sortie de l’étage sans rien injecter à l’entrée.

La différence entre le circuit amplificateur et le circuit oscillateur réside dans l’adjonction d’un réseau de réaction qui sert à prélever une fraction du signal de sortie et à le reporter à l’entrée de l’étage de façon à ce qu’il puisse "s’auto-piloter", c’est-à-dire qu’il puisse se maintenir en oscillation.

Le réseau de réaction doit présenter deux propriétés fondamentales pour que le circuit amplificateur puisse se transformer en oscillateur.

Tout d’abord, il doit inverser la phase du signal présent sur le collecteur de l’étage de façon à pouvoir ramener sur la base de ce transistor un signal en phase avec celui qui était initialement fourni par le générateur. Ensuite, il doit réduire l’amplitude du signal présent sur le collecteur, de façon que l’on ait sur la base un signal de même amplitude que précédemment.

Dans le cas du schéma de la figure 2, le réseau de réaction est constitué par le secondaire S du transformateur accordé et par la résistance R4. Le premier a pour rôle d’inverser la phase et de réduire l’amplitude, la seconde a comme simple rôle la réduction de l’amplitude ; R4 a été choisie réglable de façon à pouvoir ramener le signal réinjecté sur la base parfaitement identique à celui qui était injecté auparavant par le générateur, c’est-à-dire de façon à ce que le gain soit égal à 1.

On peut remarquer tout de suite qu’obtenir la condition du gain égal exactement à 1 est difficilement réalisable en pratique, car l’élément variable (R4) devrait être continuellement retouché. En effet, il suffit de se rappeler que le gain du transistor dépend de la température ambiante, du point de fonctionnement, de l’amplitude du signal appliqué sur la base, et qu’il varie avec l’épuisement de la pile d’alimentation et le vieillissement même du transistor.

Voyons donc brièvement les deux cas qui peuvent se présenter en pratique, lorsque le gain n’est pas exactement égal à 1, mais un peu plus grand ou petit que 1.

Lorsque le gain est plus petit que 1 (ceci peut être obtenu facilement avec le montage de la figure 2 en augmentant légèrement la valeur de R4), le courant dans la résistance Re se réduit ainsi que la tension à ses bornes. Si l’inverseur est en position 1 le signal à la sortie est plus faible que celui qui est appliqué à l’entrée par le générateur.

Si l’on place maintenant l’inverseur en position 2, on voit que le signal ramené à l’entrée n’a plus la même amplitude. Comme le signal de sortie est plus petit que le signal à l’entrée (gain inférieur à 1) le signal ramené à l’entrée est encore plus faible ; le signal amplifié que l’on va recueillir à la sortie sera encore plus petit que celui à l’entrée et ainsi de suite.

On se rend compte, ainsi, que le signal va rapidement décroître et qu’il va s’annuler très vite.

Supposons au contraire que le gain est légèrement plus grand que 1 (ce que l’on peut réaliser facilement en réduisant un peu la valeur de R4, de façon à ce que le courant qui circule dans Re soit un peu plus grand et qu’ainsi la tension qui se développe aux bornes de Re soit elle aussi un peu plus grande). Si nous partons maintenant avec les inverseurs en position 1, nous obtiendrons à la sortie un signal un peu plus grand que celui de l’entrée. Si nous basculons les inverseurs en position 2, le signal ramené à l’entrée sera un peu plus grand que celui qui était appliqué auparavant, le signal à la sortie qui va en résulter sera encore un peu plus grand et ainsi de suite ; le signal de sortie va croître de plus en plus.

Théoriquement le signal devrait croître sans cesse et devenir infini. En réalité, il va être limité par la tension d’alimentation, les conditions de polarisation du transistor ainsi que le type du transistor utilisé, comme nous l’avons vu lors de l’étude des amplificateurs. Le signal commence à croître d’abord très rapidement puis de plus en plus lentement ; le transistor, commandé par un signal dont l’amplitude est de plus en plus grande, atteint d’une part la saturation et d’autre part l’interdiction.

A un moment donné donc, le signal de sortie n’augmente plus autant que le signal à l’entrée. Le signal d’entrée continue à augmenter jusqu’à ce qu’on atteigne le point où le gain est égal à 1. Au-delà de ce point, le signal d’entrée ne peut plus augmenter, puisque le gain deviendrait inférieur à 1.

En conclusion, quand le gain de l’étage est plus petit que 1 (signal à la sortie plus petit que celui à l’entrée), le circuit ne peut se "maintenir en oscillation" et les oscillations s’amortissent très rapidement : le circuit se comporte comme un simple amplificateur en ce sens qu’il ne peut y avoir de signal à la sortie que si l’on applique à l’entrée un signal délivré par le générateur.

Quand le gain est plus grand que 1 (signal à la sortie plus grand que celui à l’entrée) non seulement le circuit se maintient en oscillation, mais encore le gain se règle automatiquement à 1, condition nécessaire pour que l’amplitude des oscillations reste constante.

Par rapport au circuit idéal de la figure 2 réglé pour avoir un gain de 1, le circuit réel, avec le gain supérieur à 1, présente un autre avantage. Comme nous l’avons vu, quand le gain est réglé exactement à 1, le circuit ne peut se maintenir en oscillation qu’après que l’on ait basculé l’inverseur de la position 1 à la position 2 et que l’on ait injecté avant un signal provenant d’un générateur. Cette manœuvre n’est absolument pas pratique et doit être répétée toutes les fois que l’on veut amorcer les oscillations.

Au contraire, quand le gain est supérieur à 1, le circuit peut "s’amorcer" par lui-même. Il suffit en effet qu’un signal quelconque se trouve sur la base du transistor pour se trouver immédiatement amplifié, puis reporté à l’entrée, réamplifié à nouveau, et ainsi de suite, jusqu’à ce que les conditions vues précédemment se trouvent vérifiées et que le circuit se maintienne en oscillation.

On n’a pas besoin non plus que le signal "amorcé" sur la base soit à la même fréquence que celle sur laquelle est accordé le circuit résonnant du collecteur : il suffit d’un signal quelconque et d’amplitude aussi faible que l’on veut. En effet, il suffit qu’il soit amplifié successivement : le circuit du collecteur, de par sa propriété sélective, va le rendre de plus en plus sinusoïdal au fur et à mesure que son amplitude va augmenter.

D’autre part, dans un circuit dont le gain est supérieur à 1, il n’est donc pas nécessaire de disposer d’un générateur et de deux inverseurs pour "amorcer" les oscillations. Il suffit de laisser en permanence la sortie reliée à l’entrée par l’intermédiaire du réseau de réaction ; dès que l’on alimente le circuit, les oscillations se produisent spontanément.

Le faible signa initial nécessaire à l’accrochage des oscillations existe toujours en pratique, comme par exemple le courant qui commence à traverser la liaison de base quand on branche l’alimentation.

En conclusion, nous dirons qu’un oscillateur n’est autre qu’un amplificateur dont la sortie est reliée à l’entrée par l’intermédiaire d’un réseau de réaction opportun de façon que le gain de l’étage (le réseau de réaction compris) soit un peu plus grand que 1. La fréquence des oscillations produites sera déterminée par la résonance du circuit de collecteur, lorsqu’il s’agira d’un amplificateur sélectif du type de la figure 2, ou bien par les caractéristiques du réseau de réaction quand (nous le verrons plus tard) l’amplificateur est du type apériodique.

2 – 1 OSCILLATEURS LC

Les oscillateurs LC sont obtenus en partant d’un amplificateur sélectif dont la charge est accordée et constituée par une self L et une capacité C. Des valeurs de L et de C dépend la fréquence des oscillations qui, en première approximation, est donnée par la formule :

f = 159/√(L x C)

où f sera en Hz,kHz ou MHz si L et C sont exprimées respectivement en H et µF ou en mH et nF (kpF) ou µH et pF.

La valeur de C comprend non seulement la capacité du condensateur placée en parallèle sur l’inductance, mais aussi les différentes capacités parasites du transistor et du câblage qui viennent se mettre en parallèle sur L, exactement de la même façon que vu précédemment à propos des amplificateurs accordés.

En choisissant convenablement les valeurs de L et de C, on pourra réaliser des oscillateurs soit BF, soit HF. Dans le premier cas, les valeurs de L et de S seront élevées ; la self sera bobinée sur un noyau en fer ou en ferrite. Dans le second cas, la self sera bobinée sur un mandrin isolant comprenant un noyau de ferrite pour le réglage, tout comme dans le cas des transformateurs FI étudiés dans les leçons précédentes.

Comme le fonctionnement est identique dans tous les cas (BF ou HF) les schémas seront semblables).

Je vous ai représenté en figure 3, la version pratique du schéma de la figure 2. Comme vous pouvez le voir, il s’agit toujours d’un oscillateur à transistor fonctionnant en émetteur à la masse. Les résistances R2, R3 et R4 servent à la polarisation et à la stabilisation thermique du transistor. Le circuit résonnant qui détermine la fréquence des oscillations est placé dans le collecteur et le circuit de réaction est constitué par le secondaire L1, bobiné directement sur l’enroulement L, et branché directement dans le circuit de base. Les condensateurs C3 et C4 offrent un passage facile à la composante alternative des courants de base et d’émetteur qui sinon devrait traverser les résistances R3 et R4.

L’enroulement de réaction a un nombre de spire beaucoup plus faible que celui de l’inductance L ; le nombre exact de spires de L1 dépend du type du transistor utilisé, du point de fonctionnement choisi et de la fréquence de fonctionnement.

Lorsque l’oscillateur est du type HF et à fréquence variable, on utilise en général un condensateur variable et le nombre de spires de L1 est déterminé expérimentalement de façon à obtenir un fonctionnement correct dans toute la gamme.

Quand le transistor fonctionne en montage base à la masse, le schéma de l’oscillateur est du type de la figure 4 ; un tel montage est souvent employé dans les oscillateurs changeurs de fréquence des récepteurs radio.

Le circuit de collecteur est couplé au circuit résonnant LC à travers l’enroulement primaire L1. De cette manière on obtient le même résultat qu’avec la prise intermédiaire sur les transformateurs FI, c’est-à-dire qu’on peut réduire la valeur de la capacité C (comme déjà vu dans la précédente leçon), ce qui est d’une très grande importance surtout lorsqu’il s’agit d’utiliser un condensateur variable qui peut alors être de faible valeur et de petites dimensions.

Le circuit de réaction est constitué par le secondaire L2 qui ramène un signal convenable en amplitude et en phase dans le circuit de l’émetteur au lieu que ce soit dans le circuit de la base comme c’était le cas dans la figure 3. Les résistances R2, R3, R4 et le condensateur C4 jouent le même rôle que dans le schéma de la figure 3. L’ordre de grandeur des valeurs des composants est donné en figure 4 (le transistor utilisé comme oscillateur est un SFT 308) Si on utilise un condensateur variable de 6pF 110pF, l’enroulement L comportera 43 spires, L1-8 spires et L2-2 spires. Ces enroulements sont bobinés sur un mandrin de 12 mm ; le fil est un fil de "litz" constitué de 32 conducteurs de 4/100mm.

On peut s’arranger, dans le circuit de la figure 4, de façon à avoir la base du transistor "libre" c’est-à-dire de manière qu’aucune tension alternative n’y soit présente ; la seule tension présente est alors la composante continue de polarisation. Ceci peut être intéressant dans le cas où l’on doit appliquer un autre signal au transistor, lorsque ce dernier fonctionne en changeur de fréquence.

Un autre avantage du montage oscillateur en base commune est de pouvoir obtenir des fréquences beaucoup plus élevées. En effet, il suffit de se rappeler qu’au fond le transistor travaille toujours comme un amplificateur et que la fréquence de coupure est beaucoup plus élevée en montage base commune qu’en émetteur à la masse.

Un autre type d’oscillateur LC appelé Hartley, est représenté en figure 5. La particularité de ce circuit réside dans la manière d’obtenir la réaction.

Comme vous pouvez le voir d’après le schéma, l’inductance du circuit résonnant comporte une prise intermédiaire reliée à la pile d’alimentation.

L’inductance L se trouve ainsi partagée en deux sections : LA qui constitue le circuit du collecteur et LB celui de la réaction.

On peut en effet considérer LA et LB comme le primaire et le secondaire d’un transformateur ; aux bornes de LB on obtient une tension en opposition de phase avec celle qui se développe aux bornes de LA.

On peut aussi faire un raisonnement différent. Considérons la tension totale qui constitue le signal HF présent aux bornes AB du circuit résonnant de la figure 5 ; pendant l’alternance positive du signal, supposons que le point A est positif de 10 V par rapport au point B.

Supposons encore pour simplifier que la prise intermédiaire se trouve exactement au milieu de l’enroulement c’est-à-dire que le nombre de spires de l’enroulement LA est le même que celui de LB. Nous dirons alors que, pendant l’alternance positive, le point A se trouve à un potentiel positif de 5 V par rapport à la prise centrale et qu’à son tour, cette prise se trouve à un potentiel positif de 5 V par rapport au point B (le point A se trouve bien à un potentiel positif de : 5 + 5 = 10 V par rapport au point B.

Mais dire que la prise centrale se trouve à un potentiel positif de 5 V par rapport au point B revient à dire que le point B se trouve à un potentiel négatif de 5 V par rapport à la prise intermédiaire. La prise centrale se trouve d’autre part au potentiel de la masse (en effet elle est reliée à la masse par l’intermédiaire de la pile et cette dernière se comporte pour la composante alternative comme un court-circuit).

Nous en conclurons donc que le point A se trouve à un potentiel positif de 5 V par rapport à la masse tandis que le point B se trouve à un potentiel négatif de 5 V par rapport à cette même masse.

Ainsi, en reliant à la masse la prise centrale de L, les points A et B se trouvent constamment à des potentiels de sens opposé (en opposition de phase). On peut donc prélever à partir du point B le signal requis par la réaction.

Le signal de réaction prélevé du point B est ramené sur la base par l’intermédiaire du condensateur C2 : on évite ainsi qu’il ne soit atténué par la présence de R2. Cette résistance (R2) sert en effet à polariser la base et le courant de polarisation est prélevé au travers de l’enroulement de réaction LB.

Un autre oscillateur, semblable au précédent, est appelé COLPITTS (du nom de son inventeur). Le principe de fonctionnement est identique en ce sens que l’on crée encore une prise intermédiaire sur le circuit résonnant pour prélever le signal de réaction.

La différence par rapport à l’oscillateur Hartley est la suivante : la prise intermédiaire est obtenue en divisant le condensateur d’accord du circuit résonnant en deux condensateurs en série CA et CB ; le point de jonction est directement mis à la masse (figure 6).

Comme il n’y a plus de prise intermédiaire sur l’inductance pour alimenter l’oscillateur, il faut maintenant l’alimenter par le point M. Mais comme au point B, on trouve le signal de réaction, il est nécessaire maintenant de l’alimenter à travers la self L1 de forte valeur (self de blocage) dont le rôle est d’empêcher que le signal de réaction ne soit court-circuité vers la masse à travers la pile d’alimentation. On appelle encore L1 "bobine d’arrêt".

La capacité d’accord C est maintenant :

C = (CA x CB)/(CA + CB )

Les oscillateurs Hartley et Colpitts présentés en figure 5 et 6 sont réalisés en montage émetteur à la masse. Ils peuvent aussi être réalisés en montage base à la masse en transposant les schémas.

De la position de la prise intermédiaire sur la bobine L (figure 5) et du choix des valeurs de CA et CB (figure 6) dépend l’amplitude du signal de réaction qui doit être d’une part suffisante pour amorcer les oscillations mais aussi d’autre part, "raisonnable" pour ne pas distordre les oscillations produites. La position "optimum" de la prise et les valeurs "correctes" des condensateurs sont en général déterminées expérimentalement.

2 – 2 OSCILLATEURS RC

Les oscillateurs dérivent en général d’un amplificateur de type apériodique (c’est-à-dire dont la charge est constituée par une simple résistance) à un ou plusieurs étages, et dont la sortie et l’entrée sont reliées au travers d’un réseau ne contenant que des résistances et des capacités. La fréquence des oscillations produites est déterminée, non pas par la fréquence de résonance d’un circuit résonnant, mais par les caractéristiques de ce réseau de réaction.

Illustrons tout ceci en examinant un type d’oscillateur RC très simple constitué par un seul transistor. Nous partirons donc d’un amplificateur normal à charge résistive et utiliserons un réseau de réaction qui effectuera l’inversion de phase.

Le schéma d’un tel type d’oscillateur est donné en figure 7. Vous y distinguez nettement l’amplificateur apériodique et le réseau de réaction.

L’amplificateur apériodique est constitué par le transistor polarisé à l’aide des résistances R2, R3 et R4 et par la charge RC.

Le condensateur C4 a comme simple rôle de supprimer la contre-réaction en alternatif dûe à la résistance R4 (ce qui ferait diminuer le gain). La charge étant purement résistive (RC), l’étage peut amplifier une large bande passante. Il n’est pas apte par contre à déterminer la fréquence de l’oscillation car il n’a pas de fréquence caractéristique propre, comme c’était le cas avant avec l’amplificateur sélectif.

Le réseau de réaction est constitué de trois cellules RC placées les unes derrière les autres entre le collecteur et la base (marquées I, II et II sur la figure 7.

Les trois condensateurs C ont la même valeur, ainsi d’ailleurs que les trois résistances R. A noter toutefois que la résistance R de la troisième cellule est composée en partie de la résistance Re de l’étage en série avec la résistance R’ dont la valeur sera obligatoirement :

R – Re. Ainsi par exemple si l’on prend R = 10kΩ et que la résistance Re d’entrée de l’étage est 1kΩ, la résistance de la troisième cellule sera égale à : 10 – 1 = 9kΩ

Un tel réseau a la propriété (à cause de la présence des condensateurs), de déphaser le courant alternatif qui le traverse. Ainsi le courant de sortie du réseau (c’est-à-dire le courant de commande de l’étage) est en opposition de phase par rapport au courant d’entrée du réseau (c’est-à-dire le courant alternatif de collecteur). C’est pour cette raison que l’oscillateur de la figure 7 prend aussi le nom "d’oscillateur RC à déphasage". Le déphasage introduit par la cellule de réaction dépend des valeurs de R et de C.

Ayant fixé les valeurs de R et C, on démontre qu’il n’existe qu’une seule valeur de fréquence pour laquelle le courant de sortie de la cellule est exactement en opposition de phase par rapport à celui d’entrée. Ce sera donc la fréquence d’oscillation.

La fréquence est donnée par la formule : f = 65/(R x C)

où la fréquence est exprimée en kHz si la résistance est en kΩ et la capacité en nF. Ainsi par exemple, si R = 10kΩ et la capacité = 5nF (= 5.000pF) la fréquence d’oscillation sera

f = 65/(10 x 5) = 65/50 = 1,3kHz

Cette valeur de la fréquence d’oscillation est théorique et peut différer sensiblement de la fréquence obtenue en pratique ; ceci est surtout dû au déphasage introduit par le transistor lui-même, qui est d’autant plus sensible que le transistor fonctionne plus près de sa fréquence de coupure.

En examinant le schéma de la figure 7, on pourra remarquer comment le courant ic (c’est-à-dire la composante alternative du courant du collecteur ou en d’autres termes, le courant du signal de sortie du transistor) se partage en un courant i1 qui traverse RC et un courant i2 qui constitue le courant d’entrée de la cellule de réaction.

A son tour le courant i2 se partage en i3 et i4 qui lui-même se partage en i5 et i6. Le dernier enfin se partage en i7 et iB. A cause même de cette division, le courant qui atteint la base est notablement réduit par rapport à celui du collecteur.

La théorie annonce, que dans le meilleur des cas, le courant iB ne peut être au maximum que le trentième du courant iC.

Ceci signifie donc, que pour que le circuit puisse osciller, il faut que le courant iC soit au moins trente fois plus grand que iB, ce qui équivaut à dire que le transistor doit avoir un coefficient d’amplification en courant d’au moins 30.

Le circuit de la figure 7 ne peut donc être utilisé en pratique que seulement avec des transistors dont le β est supérieur à 30.

De ce qui vient d’être dit, il résulte que le circuit de la figure 7 ne pourra être réalisé en montage base à la masse, car dans ce cas le coefficient d’amplification en courant est toujours inférieur à 1, et le courant de sortie du transistor est toujours inférieur à celui de commande ; aucun transistor ne peut satisfaire les conditions vues précédemment.

Le schéma de la figure 8 dérive directement de celui de la figure 7 en permutant capacités et résistances dans la cellule de réaction.

On aura donc trois résistances R d’égale valeur montées en série et trois condensateurs reliés vers la masse. Les rectangles en pointillés indiquent les trois cellules.

Vous noterez encore que la première résistance sert en même temps de résistance de charge collecteur. Le condensateur C1 joue seulement un rôle de liaison, et évite que la composante continue du courant de collecteur n’atteigne la base. La résistance R1 a comme seul rôle d’éviter que la faible valeur de la résistance d’entrée Re de l’étage ne perturbe le fonctionnement du réseau de réaction.

A part ces remarques, le fonctionnement du schéma de la figure 8 est identique à celui du schéma de la figure 7. La formule pour déterminer la fréquence d’oscillation avec les mêmes limitations qu’énoncées précédemment est la suivante :

f = 390/(R x C)

où f est encore exprimée en kHz si R est donné en kΩ et C en nF.

En reprenant l’exemple de la figure 7, où R = 10.000Ω = 10kΩ et C = 5.000pF = 5nF, la fréquence est maintenant :

f = 390/(R x C) = 390/(10 x 5) = 390/50 = 7,8kHz = 7.800Hz

On voit tout de suite que la fréquence avec cette disposition des éléments est six fois plus élevée que précédemment (7,8 = 6 x 1,3kHz).

Par rapport au schéma de la figure 7, le schéma de la figure 8 a l’avantage de délivrer un signal plus sinusoïdal et d’être mieux adapté dans le cas où l’on désire réaliser un oscillateur à fréquence variable. En effet, dans ce schéma, les trois condensateurs de la cellule de réaction ont une connexion commune reliée à la masse ce qui permet d’utiliser un condensateur variable à trois cages du type classique et où les armatures mobiles des trois sections sont commandées par un axe unique et reliées électriquement entr’elles (figure 8).

3 – STABILITÉ EN FRÉQUENCE ET EN AMPLITUDE

On appelle stabilité en fréquence d’un oscillateur, son aptitude à délivrer un signal dont la fréquence reste constante pendant son fonctionnement. La stabilité en fréquence dépend de la stabilité de tous les composants qui interviennent dans la détermination de la fréquence, c’est-à-dire stabilité des valeurs de l’inductance et de la capacité dans les circuits LC et stabilité des valeurs des résistances et des capacités dans les circuits RC.

Dans tous les cas, interviennent aussi (plus ou moins) les caractéristiques des transistors. La stabilité en fréquence dépend donc aussi de ces dernières.

Tandis que sur les valeurs de l’inductance, des capacités et des résistances, la température joue un rôle plus ou moins évident et sensible, cette dernière a une influence décisive sur les transistors. Le vieillissement des composants a aussi son mot à dire. Par contre, la variation des tensions d’alimentation joue un rôle déterminant sur la stabilité de la fréquence à cause des variations qu’elle entraine dans les paramètres des transistors.

Pour obtenir une bonne stabilité en fréquence, il faut en premier lieu faire en sorte qu’elle dépende le moins possible des transistors.

Il faut se rappeler en effet que le transistor intervient dans la détermination de la fréquence grâce au déphasage qu’il introduit ; il faut noter aussi que le signal sur le collecteur n’est jamais en parfaite opposition de phase avec celui qui existe sur la base et ceci d’autant moins que la fréquence d’oscillation se rapproche plus de la fréquence de coupure du transistor.

Ainsi, pendant le fonctionnement, le déphasage introduit par le transistor augmente ou diminue entrainant une variation de la fréquence. Comme ce déphasage s’ajoute à celui introduit par la cellule de réaction, il est évident que l’influence du transistor se manifeste plus dans le cas des oscillateurs RC que dans celui des oscillateurs LC.

En effet, comme nous l’avons vu, la fréquence d’oscillation des premiers est donnée par le réseau de réaction. Ainsi si l’on désire que la fréquence soit stable, il faut faire en sorte qu’une variation en sens contraire se produise de façon à maintenir constante la fréquence du signal.

Dans le cas des oscillateurs LC, au contraire, la fréquence est déterminée par la résonance du circuit accordé, qui dépend presque exclusivement des valeurs de L et de C et se ressent donc peu des déphasages introduits par le transistor.

De tout ce qui vient d’être dit, il ressort que les oscillateurs LC sont beaucoup plus stables que ceux en RC. D’autre part, pour réduire l’influence du transistor sur la fréquence d’oscillation il faut que ce dernier ne travaille pas trop près de sa fréquence de coupure et que ses paramètres restent aussi constants que possible. Pour cela, il faut le stabiliser en température et en tension d’alimentation.

En ce qui concerne les circuits LC, il faut encore ajouter que la fréquence sera d’autant plus stable que le facteur de qualité Q du circuit résonnant sera plus élevé.

On appelle stabilité en amplitude d’un oscillateur son aptitude à maintenir constante l’amplitude des oscillations produites, qui ne dépend que très peu des composants et presque exclusivement du gain du transistor.

Pour obtenir une bonne stabilité en amplitude, il faut stabiliser le plus possible le gain du transistor, ce que l’on obtient encore en stabilisant la température et les tensions d’alimentation et en utilisant des réseaux de contre-réaction qui ont la propriété comme nous le verrons ultérieurement de stabiliser le gain.

Il faut encore remarquer que l’amplitude des oscillations croît jusqu’à saturer l’étage. Ainsi plus l’étage est saturé, plus l’amplitude des oscillations est stable ; par contre le signal est alors distordu et est très loin de sa forme sinusoïdale.

Comme la saturation de l’étage dépend de l’amplitude du signal ramené à l’entrée, il est évident que l’on peut trouver un compromis entre une bonne stabilité en amplitude et une forme sinusoïdale correcte en agissant, soit sur l’amplitude du signal de réaction, soit sur le gain de l’étage. La stabilité en amplitude dépend donc en grande partie comme nous l’avons prévu de la cellule de réaction.


EXERCICES DE RÉVISION SUR LA 25ème LEÇON THÉORIQUE

1 – Qu’appelle-t-on un oscillateur ?

2 –Quelle différence y a-t-il entre un oscillateur BF et un HF ?

3 – Quand dit-on qu’un oscillateur est LC et quand est-il RC ?

4 – Qu’appelle-t-on cellule (ou réseau) de réaction ?

5 – Quelles sont les propriétés d’un réseau à réaction ?

6 – Quelles sont les possibilités d’un étage dont le gain est supérieur à 1 ?

7 – Quel est l’avantage d’un oscillateur LC en montage base à la masse par rapport à celui en montage en émetteur commun ?

8 – Quelle est la différence principale entre un oscillateur Hartley et un Colpitts ?

9 – Pourquoi un oscillateur RC à déphasage ne peut fonctionner en base à la masse ?


RÉPONSES AUX EXERCICES DE RÉVISION SUR LA 24ème LEÇON THÉORIQUE

1 – Le coefficient Qo est donné par :

Qo = Xo/Rf = 300/5 = 60

2 – Rp = Qo2 x Rf = (60)2 x 5 = 18.000Ω = 18kΩ

3 – On sait que Xo = Lωo et que Qo = (Lωo)/Rf (= Xo/Rf )

D’où :

Rp = Qo2 x Rf = (Lωo/Rf)2 x Rf

 = (L2 ωo2)/(Rf2) x Rf = (L2ωo2)/Rf

4 – Calculons tout d’abord ωo

ωo = 2πfo = 2 x 3,14 x 300Hz = 1884

o)2 = (1884)2 = 3.550.000 environ

D’où Rp = (L2 ωo2 )/Rf = (4 x 3.550.000)/100 = 142.000Ω = 142kΩ

5 – L’"effet pelliculaire" ou "effet de peau" est le phénomène dans lequel la résistance d’un conducteur augmente lorsque la fréquence du courant qui la traverse croît.

6 – Un fil dit de "litz" est un conducteur formé de plusieurs fils de faible section, torsadés entr’eux et isolés. Il est avantageux par rapport à un conducteur unique de section égale pour la résistance plus faible qu’il offre aux courants de fréquences élevées.

7 – Dans un transformateur où le primaire seul est accordé, le secondaire est bobiné directement sur le primaire. Dans le cas, où primaire et secondaire sont simultanément accordés, les deux enroulements sont bobinés séparés et à une certaine distance entr’eux.

8 – Par couplage critique, on indique que l’on atteint à la fréquence de résonance, la tension maximum possible.

9 – Lorsque le couplage est supérieur au couplage critique, la courbe de réponse présente un creux à la fréquence de résonance du primaire et du secondaire.

Fin de la leçon 25


LECON 26

1 – RÉCEPTEURS RADIO A TRANSISTORS

Nous avons étudié jusqu’à maintenant la physique des semi-conducteurs, puis le fonctionnement des transistors. Nous avons examiné aussi les amplificateurs en général : BF, préamplificateurs en tension et amplificateurs en puissance. Ensuite, nous avons vu les amplificateurs HF et les circuits oscillateurs. Nous avons ainsi réuni tous les éléments nécessaires pour commencer l’étude des récepteurs radio à transistors ; il suffit, en effet, de réunir pour ainsi dire tous les circuits élémentaires déjà étudiés pour réaliser un circuit plus complexe comme celui d’un récepteur.

Pour cela, il convient tout d’abord d’examiner la composition d’un récepteur à l’aide d’un schéma-bloc. Ainsi, les différentes parties du récepteur sont indiquées par convention, par un simple rectangle dans lequel est inscrite la fonction spécifique de l’étage.

En général, chaque rectangle représente un étage comprenant un seul transistor. Quelquefois cependant, le rectangle pourra englober deux transistors (comme par exemple dans le cas où l’étage de sortie est un push-pull) ou bien une diode (comme dans le cas d’un détecteur) ou bien ni transistor ni diode (quand il représentera un montage particulier ne comportant aucun semi-conducteur mais restant toutefois d’importance assez fondamentale pour être mis en évidence : par exemple le réglage du volume ou le contrôle de tonalité).

Un récepteur en modulation d’amplitude (AM) peut ainsi être représenté par le schéma-bloc de la figure 1. En suivant le signal de l’antenne vers le haut-parleur, nous rencontrerons les étages suivants.

Le signal est capté par l’antenne et amplifié par l’étage HF qui sera donc du type sélectif à fréquence d’accord variable et pouvant être accordé sur la fréquence du signal que l’on désire recevoir.

On trouve ensuite l’étage mélangeur qui avec l’oscillateur constitue le changeur de fréquence dont le rôle est, comme son nom l’indique, de changer la fréquence du signal en une fréquence de valeur fixe qui est en général de 480kHz (ou 455kHz ou 467kHz selon les constructeurs). Cette fréquence fixe est appelée fréquence intermédiaire.

De cette manière quelle que soit la fréquence du signal reçu, le signal à la sortie du mélangeur aura toujours pour valeur 467kHz et pourra ainsi être énergiquement amplifié par les étages FI qui travaillant à fréquence fixe présentent de notables avantages par rapport à ceux qui fonctionnent à fréquence variable, tant du point de vue des caractéristiques électriques, que du point de vue de la réalisation et du prix de revient.

En effet, si l’on ne fait pas de changement de fréquence, tous les étages qui précèdent le détecteur doivent être accordés sur la fréquence du signal reçu de façon à pouvoir présenter les caractéristiques de sélectivité indispensable à la séparation de l’émetteur reçu parmi tous les autres.

Le circuit d’entrée du premier étage et tous les transformateurs de liaison placés entr’étages devront être du type à accord variable et réalisés par des inductances ou des condensateurs variables.

Ainsi, dans le cas de l’accord par condensateurs variables, des complications mécaniques apparaissent ; le condensateur variable devra être composé de plusieurs cages : autant de cages qu’il a d’étages, plus un pour le circuit d’entrée du premier étage. Si l’on voulait utiliser des transformateurs à primaire et secondaire accordés, le nombre de cages serait doublé.

La complication mécanique est encore plus grande, s’il s’agit d’accorder les circuits par des inductances variables, car il faut alors déplacer simultanément tous les noyaux des inductances. Cette complication devient infernale, si le récepteur comporte plusieurs gammes d’ondes car il faut alors prévoir la commutation de tous les transformateurs pour chaque gamme.

Les inconvénients de caractère électrique deviennent pratiquement insolubles si l’on désire que l’amplification reste constante dans toute une gamme. Ainsi, la sélectivité ne peut rester constante. Il en résulterait que le récepteur serait plus sensible sur certaines fréquences et sa capacité de sélection, c’est-à-dire sa capacité à séparer un émetteur parmi les autres, serait différente d’un point à l’autre de l’échelle.

Si on choisit au contraire la solution du changeur de fréquence, les difficultés se trouvent réduites (à part le circuit d’entrée et la liaison entre l’amplificateur HF et l’étage mélangeur). En effet, tous les autres étages sont à fréquence fixe, c’est-à-dire qu’ils ne nécessitent pas d’une part des systèmes d’accord compliqués et que d’autre part, ce qui est très intéressant, ils présentent des caractéristiques d’amplification et de sélectivité constantes pour les différentes fréquences reçues.

L’inconvénient est l’utilisation d’un changeur de fréquence ce qui nécessite un oscillateur à fréquence variable.

En effet, dans le changement de fréquence, le signal FI naît du battement entre le signal reçu et le signal de l’oscillateur, battement qui se produit dans l’étage mélangeur. Pour que le signal FI soit égal à 480kHz (par exemple), il faut que la fréquence de l’oscillateur diffère de celle du signal reçu de 480kHz exactement.

Dans le cas de la figure 1, la commande d’accord devra agir sur la fréquence d’accord du circuit d’entrée, du circuit de liaison entre l’étage HF et l’étage mélangeur et aussi sur la fréquence de l’oscillateur. On pourra donc utiliser par exemple un condensateur variable à trois cages et à commande unique.

Le signal amplifié par les étages FI est appliqué, comme on peut le voir à la figure 1, à l’étage détecteur, constitué en général par une simple diode quand il s’agit de détecter une onde modulée en amplitude.

Le détecteur délivre à sa sortie deux signaux distincts : un constitué par une tension alternative dont l’allure reproduit fidèlement celui de la modulation du signal reçu et représente le véritable signal basse-fréquence ; l’autre constitué par une tension continue d’amplitude d’autant plus grande que le signal reçu est plus intense, c’est-à-dire qu’il est proportionnel à l’intensité du signal HF capté.

Le signal BF est envoyé à un potentiomètre de volume qui règle l’amplitude du son qui sera émis par le HP. Ensuite ce signal basse fréquence est appliqué au premier étage BF.

Ce signal pourra ensuite être amplifié par un second étage BF qui délivrera un signal d’amplitude convenable pour piloter l’étage final de puissance, qui à son tour fournira la puissance nécessaire pour actionner le haut-parleur.

La liaison entre le premier et le second étage BF est normalement du type à résistance-capacité, tandis qu’entre le second étage et l’étage final, on trouve presque toujours un transformateur. L’étage final à son tour, peut-être du type à un seul transistor en classe A, ou à deux transistors push-pull en classe B.

Entre le second étage BF et le final, peut être placé un contrôle de tonalité comme indiqué sur la figure 1, dont le rôle est de contrôler la fréquence de coupure supérieure de l’amplificateur BF avec comme résultat d’atténuer plus ou moins les fréquences élevées. Dans certains cas, le réglage peut aussi se faire sur les fréquences basses par atténuation ou par expansion.

Le second signal délivré par le détecteur (c’est-à-dire la tension continue d’amplitude proportionnelle à l’intensité du signal reçu) est ramené vers les étages HF et première FI (figure 1). On réalise de cette façon un dispositif appelé réglage automatique de sensibilité (RAS) qui rend le récepteur d’autant moins sensible que le signal reçu est plus intense.

De cette façon, les signaux faibles sont amplifiés plus que les signaux forts. Ainsi, on applique au détecteur des signaux qui ont presque tous la même amplitude et on évite aussi de saturer les étages FI par des signaux forts qui auraient, sans cela, une trop forte amplitude. Avec ce RAS, on obtient une amplitude du signal BF à la sortie du détecteur quasiment constante.

Je vous ai représenté à la figure 2, un schéma-bloc d’un récepteur portable réduit au minimum de composants indispensables.

On a supprimé, dans ce schéma, l’amplificateur HF. Le changeur de fréquence est réalisé par un seul transistor, qui fonctionne simultanément en oscillateur et en mélangeur. Un seul préamplificateur BF est prévu. Le réglage de tonalité est supprimé et le RAS agit seulement sur le premier étage FI.

Nous allons examiner maintenant la constitution des circuits représentés dans le schéma-bloc.

2 – CIRCUIT D’ENTRÉE ET AMPLIFICATEUR HF

L’amplificateur HF, lorsqu’il existe (figure 1), est du type sélectif avec les circuits d’entrée et de sortie accordés sur la fréquence du signal que l’on reçoit.

Son schéma sera analogue à ceux que nous avons vus avec les amplificateurs sélectifs : le transistor travaillera normalement en montage émetteur à la masse et sera du type adapté pour les gammes de fréquences que nous désirons recevoir, c’est-à-dire que sa fréquence de coupure fβ devra être supérieure à la fréquence maximum à recevoir.

Dans le cas de la réception des petites ondes, on prendra un transistor de fréquence de coupure fβ un peu supérieur à 1,5MHz ; au contraire pour la réception des ondes courtes, fβ devra être supérieur à 15 ou 20MHz.

Le schéma type de l’amplificateur sélectif peut être comme celui qui est représenté en figure 3. Comme à l’habitude les résistances R2, R3 et R4 ainsi que les condensateurs C3 et C4 servent pour le circuit de polarisation et la stabilisation thermique.

Le point de fonctionnement est choisi pour obtenir à la sortie un gain aussi élevé que possible. Les signaux présents dans le premier étage d’un récepteur sont toujours très faibles et il n’y a aucun danger de saturation.

Le point de fonctionnement est choisi en fonction du bruit de fond produit par le transistor même. En effet, le courant de collecteur d’un transistor quelconque n’est pas parfaitement constant dans le temps, mais subit continuellement des variations produites par la variation d’un instant. à l’autre du nombre de porteurs présents dans le semi-conducteur.

Les variations sont extrêmement faibles et aucun milliampèremètre placé dans le collecteur ne pourra les révéler. La valeur qu’indiquera le milliampèremètre est la valeur moyenne du courant collecteur, qui en réalité subit continuellement des accroissements et des diminutions autour de cette valeur, tout comme si on appliquait à la base un véritable signal.

Les petites variations du courant de collecteur du premier transistor sont transmises au transistor suivant et ainsi de suite. Amplifiés par tous les étages qui composent le récepteur, elles se traduisent dans le haut-parleur par un bruit de fond caractéristique qui ressemble à un souffle superposé à la musique et à la parole.

Il est évident que le souffle perçu dans le haut-parleur est dû presque exclusivement au premier transistor, parce que ce bruit de fond est amplifié par tous les étages successifs, tandis que le bruit de fond produit par les autres transistors est moins important car il est amplifié par moins d’étages.

Pour réduire le souffle, qui se fait particulièrement sentir lors de la réception de stations lointaines (plus le signal reçu est faible et plus le bruit de fond devient gênant), il faut soigner tout particulièrement l’établissement du projet du premier étage.

Comme d’autre part le bruit de fond produit par un transistor est plus ou moins fort selon la valeur du courant de collecteur, il est clair qu’il faut faire travailler le transistor avec un courant de collecteur bien déterminé pour lequel le souffle est minimum.

Cette valeur du courant de collecteur est en général de l’ordre de 1 mA pour les transistors HF.

Le transformateur de liaison entre TR1 et TR2 est constitué par le primaire L3 et le secondaire L5 et est très semblable aux transformateurs FI avec la seule différence qu’il est à fréquence variable au lieu de fixe. Ici encore, pour pouvoir utiliser un condensateur variable de capacité pas trop élevée, CV2 n’est pas placé directement aux bornes de L3, mais sur un prolongement de celle-ci, de la même manière que sur les transformateurs FI.

Par contre sur la figure 3, au lieu de prolonger L3, on fait un troisième enroulement L4 dont le nombre de spires est supérieur à celui de L3. ; de cette manière on a l’avantage d’avoir L4 complètement isolé de L3 et de pouvoir brancher directement à la masse l’armature de CV2. Ceci est très commode, car CV2 forme avec CV1 et CV3, un condensateur variable à trois cages, dont toutes les armatures mobiles sont réunies entr’elles, électriquement et mécaniquement et, d’autre part, il faut qu’elles soient toutes réunies à la masse.

Les enroulements du transformateur HF (comme ceux d’ailleurs des transformateurs FI) sont bobinés sur un même noyau en matériau ferromagnétique pour hautes fréquences et réglables en général pour pouvoir accorder le circuit sur la fréquence exacte. Le transformateur est enfermé dans un boitier métallique relié à la masse (il est représenté par les traits en pointillés sur la figure 3) ce qui évite des couplages capacitifs parasites avec d’autres circuits.

Dans les récepteurs petites ondes et grandes ondes (gammes comprises respectivement entre 500kHz et 1500kHz et entre 150kHz et 300kHz environ) le circuit résonnant du premier étage fonctionne aussi comme une antenne, en ce sens qu’il capte directement les ondes radio sans être relié à une antenne extérieure.

On réalise ainsi les antennes dites "ferrite" du fait que l’inductance du circuit résonnant est bobinée sur un bâtonnet de ferrite dont les dimensions sont celles d’un crayon ordinaire.

Le ferrite est un matériau du type céramique constitué par des oxydes et des carbonates de fer et de manganèse ; il présente des propriétés magnétiques élevées mais, comme la céramique, il n’est pas conducteur du courant électrique. Ainsi ses propriétés restent inaltérées même aux fréquences élevées de l’ordre de quelques MHz et plus.

Si un barreau de ferrite est placé dans un champ électromagnétique, comme celui qui est rayonné dans l’espace par une antenne d’émission, de par ses propriétés de perméabilité magnétique élevée il va présenter une très faible réluctance (résistance) aux lignes de flux de la composante magnétique du champ électromagnétique : ces lignes de flux se concentrent donc à l’intérieur du barreau (figure 4a).

La présence du barreau ferrite a pour effet de "condenser" les lignes de flux et de faire en sorte qu’un nombre plus grand de celles-ci passent à l’intérieur du barreau. Le résultat est que l’on obtient aux bornes de la bobine une tension HF plus grande, comme si la bobine était placée dans un champ beaucoup plus intense. Cette tension induite est d’autant plus grande que les dimensions du ferrite sont plus grandes. L’efficacité de l’antenne dépend donc des dimensions du bâtonnet sur lequel est bobinée la self.

Le signal ainsi capté est suffisant pour commander le premier transistor sans avoir à recourir à l’antenne classique constituée par un morceau de fil tendu dans l’air et de longueur convenable.

L’antenne ferrite est en réalité moins efficace que celle formée d’un fil tendu, mais offre les avantages par rapport à cette dernière. Avant tout, il faut remarquer que l’antenne ferrite est appelée aussi "antenne magnétique", car comme on l’a vu elle est sensible uniquement à la seule composante magnétique du champ électromagnétique et la tension HF induite est dûe à une induction magnétique.

L’autre type d’antenne (fil aérien) s’appelle au contraire "antenne capacitive" car elle est sensible uniquement à la seule composante électrique du champ électromagnétique et la tension HF induite dans le fil l’est par effet capacitif entre le fil et l’espace environnant.

L’avantage que l’antenne magnétique présente par rapport à l’antenne capacitive est dû au fait que la première est sensible seulement à la composante magnétique et la seconde à la seule composante électrique.

Les appareils électriques tels que les moteurs, interrupteurs, etc… se comportent comme de véritables "émetteurs à étincelles" et rayonnant dans l’espace des ondes électromagnétiques discontinues qui se superposent aux ondes des émetteurs perturbent la réception (parasites).

Dans le voisinage de l’appareil qui les produit, la composante électrique du champ électromagnétique perturbateur émis par les étincelles, est beaucoup plus intenses que la composante magnétique ; il en résulte que les parasites induits dans une antenne capacitive sont beaucoup plus intenses que ceux induits dans une antenne magnétique.

En conclusion, nous dirons que l’antenne magnétique est beaucoup plus avantageuse, parce que le signal capté est peut-être moins intense qu’il ne le serait s’il était capté par une antenne capacitive, mais il se trouve moins perturbé ; en d’autres termes nous pourrons dire, (ce qui n’est d’ailleurs pas parfaitement exact) que l’antenne magnétique est moins sensible aux parasites qu’une antenne capacitive.

Une autre caractéristique intéressante de l’antenne ferrite est qu’elle est directionnelle. En effet, elle ne fonctionne correctement que si elle est placée dans la direction des lignes du flux, car, dans ce cas, le flux qui la traverse est maximum et le signal induit dans la bobine est maximum aussi.

Etant donné que la direction des lignes de flux de la composante magnétique du champ électromagnétique est orthogonale à la direction de propagation des ondes radio, on en déduit que le signal capté par l’antenne est maximum quand elle est disposée de façon à ce que son axe soit perpendiculaire à la direction de la propagation (figure 4b) et qu’il est minimum quand son axe est parallèle à la direction de propagation (figure 4c).

D’autre part, comme les lignes de flux sont horizontales (ceci provient du fait que les antennes d’émission sont des pylônes verticaux) les antennes ferrites devront toujours être disposées horizontalement c’est-à-dire orientées pour recevoir un signal d’intensité maximum.

En examinant à nouveau le schéma de la figure 3, il faut encore remarquer qu’en ce qui concerne le circuit d’entrée, le circuit résonnant est constitué par l’enroulement L1 et par le condensateur variable CV1. Comme on veut utiliser un condensateur variable, dont la capacité ne soit pas trop élevée, il faut que l’inductance L1 soit par contre relativement grande. Il va en résulter que le circuit résonnant aura une résistance Rp (voir leçon théorique 21) élevée, et que l’on ne pourra pas le brancher directement sur la base du transistor, étant donné la faible résistance d’entrée.

Il faudra donc prévoir un transformateur entre le circuit résonnant d’antenne et le transistor ; on bobinera donc sur le même bâtonnet de ferrite, un secondaire L2 constitué par un nombre de spires réduit.

Comme nous l’avons déjà dit, les antennes ferrites travaillent remarquablement dans la gamme des petites et grandes ondes, mais ont une efficacité trop faible pour être utilisées dans la gamme des ondes courtes.

Pour cette gamme de fréquence (et aussi si on veut ne pas utiliser d’antenne ferrite pour les autres gammes), on fait appel à l’antenne capacitive formée par un fil tendu verticalement, ou bien dans le cas des récepteurs portables, ou récepteurs auto, on utilise une antenne télescopique de 1 m de long environ.

Dans ce cas, le circuit d’entrée a l’aspect d’un transformateur HF classique. Le circuit résonnant est constitué par CV1 et L1 (figure 5). L’inductance est bobinée sur le noyau et couplée au transistor par l’intermédiaire du secondaire L2 constitué de quelques spires. Comme l’antenne capacitive présente une impédance relativement basse, elle ne peut être reliée directement à l’extrémité supérieure de L1, car elle amortirait trop le circuit résonnant et le rendrait peu sélectif. Pour obtenir un rendement maximum de l’antenne, il faut la relier à une prise intermédiaire de L1, ou tout simplement à l’extrémité supérieure de L2.

Dans le cas des récepteurs PO et GO, l’antenne capacitive peut encore être branchée directement à l’extrémité supérieure de L1, par l’intermédiaire d’un condensateur C de faible capacité indiqué en pointillés sur la figure 5. Ce couplage est moins efficace que le précédent et donc peu utilisé.

Le transformateur d’antenne peut ou non être enfermé dans un blindage métallique, comme cela se fait pour les autres transformateurs.

Il faut encore noter qu’on branche quelquefois une antenne capacitive (télescopique) au circuit d’entrée déjà constitué par une antenne magnétique, pour augmenter la faible sensibilité du récepteur, surtout s’il est du type portable.

2 – 1 CONVERTISSEUR A OSCILLATEUR SÉPARÉ

Le convertisseur est formé par un étage oscillateur, constitué par le transistor TR 3 qui fonctionne comme nous l’avons vu dans la précédente leçon et d’un étage mélangeur. Ce dernier est encore principalement un étage amplificateur du type sélectif, quoiqu’un peu particulier.

En effet, son circuit d’entrée est à fréquence variable et accordé sur la fréquence du signal reçu (il est constitué en effet du transformateur de couplage entre TR1 et TR2). Le circuit du collecteur est au contraire accordé sur une fréquence fixe (480kHz par exemple) et est constitué par le primaire du premier transistor FI.

On injecte sur l’émetteur de TR2, par l’intermédiaire de C5, le signal prélevé sur l’oscillateur par l’enroulement spécial L10.

Ainsi, TR2 est piloté simultanément par le signal reçu, de fréquence fs, sur sa base et par le signal de l’oscillateur, d’amplitude beaucoup plus grande et de fréquence fo injecté sur son émetteur.

Le courant de collecteur est ainsi formé de plusieurs composantes : la première composante aura la fréquence fs du signal appliqué sur la base ; la seconde composante aura la fréquence fo (en général plus élevée que fs) du signal appliqué à l’émetteur. Aucune autre composante ne devrait être présente si le transistor fonctionnait dans des conditions normales d’amplification.

Mais, comme je vous l’ai dit plus haut, le signal délivré par l’oscillateur est de très grande amplitude, et amène le point de fonctionnement de TR2 à l’interdiction pendant les crêtes positives, et à saturation pendant les crêtes négatives.

Il devient donc évident que le transistor dans ces conditions ne peut fonctionner sans distordre les signaux qui lui sont appliqués. Le résultat de ces distorsions se traduit par l’apparition de deux autres composantes : une de fréquence égale à la somme des fréquences des deux signaux appliqués, c’est-à-dire fo + fs, l’autre de fréquence égale à la différence de ces deux fréquences, c’est-à-dire fo – fs.

Ces deux composantes sont appelées "composantes de battement" en ce sens qu’il naît un battement entre les deux signaux appliqués à l’étage mélangeur.

Si l’on s’arrange de façon qu’en faisant varier le condensateur variable, (c’est-à-dire que CV1, CV2 et CV3 varient simultanément) la fréquence fo de l’oscillateur reste toujours supérieure (de 480kHz par exemple) à celle d’accord des deux autres circuits (c’est-à-dire du circuit d’antenne et du transformateur HF) correspondant à la fréquence fs du signal que l’on désire recevoir, la fréquence de la composante de battement fo – fs gardera toujours la valeur de la fréquence intermédiaire c’est-à-dire 480kHz dans notre exemple.

Supposons, en effet, que nous désirions recevoir un signal dont la fréquence fs = 1MHz = 1000kHz. En accordant le circuit d’antenne sur cette fréquence, la fréquence de l’oscillateur aura donc pour valeur 1000 + 480 = 1480kHz. La composante de battement fo – fs aura comme fréquence 1480 – 1000 = 480kHz

Les autres composantes du courant de collecteur auront des fréquences de : 1000kHz, 1480kHz, 2480kHz, égales respectivement à la fréquence fs du signal reçu, à celle fo de l’oscillateur et à celle du battement fs + fo.

De ces quatre composantes présentes dans le circuit du collecteur de TR2, une seule vient à être amplifiée et précisément celle de 480 kH, parce que le circuit de collecteur de TR2 est accordé sur cette fréquence.

De cette manière, le signal reçu (dont la fréquence est 1000kHz) après l’étage mélangeur, aura pour fréquence 480kHz. Vous voyez facilement en refaisant les calculs simples vus ci-dessus, que toute fréquence fs sera convertie en une valeur fixe de 480kHz. Vous voyez aussi que si le signal reçu est modulé en amplitude, le signal à la sortie du mélangeur sera modulé de façon identique, puisque son amplitude variera proportionnellement à celle du signal reçu.

Le signal de fréquence intermédiaire conservera donc toutes les caractéristiques de la modulation du signal reçu et ne diffèrera de celui-ci que par la valeur de la fréquence porteuse.

Du secondaire L7 du premier transformateur FI (dont le primaire accordé est constitué par C6 et L6), le signal à 480kHz passe dans les étages FI successifs.

2 – 2 CHANGEUR DE FRÉQUENCE AUTO-OSCILLANT

Dans les récepteurs portables, le circuit de la figure 3 est simplifié : l’amplificateur HF est supprimé et l’étage oscillateur et mélangeur est constitué par un seul transistor.

Ainsi un seul étage travaille comme changeur de fréquence, comme mélangeur et comme oscillateur. Le circuit est appelé "Convertisseur auto-oscillant" et son schéma est indiqué en figure 6.

En examinant la figure 6, vous pouvez remarquer qu’étant donné que l’étage HF n’existe plus, le circuit d’antenne (toujours du type à ferrite quand il s’agit d’ondes longues et d’ondes moyennes) est directement relié à la base du changeur de fréquence.

Vous pouvez voir en comparant les schémas des figures 3 et 6 que ce dernier peut être considéré comme l’ensemble de l’oscillateur et du mélangeur de la figure 3. En effet, on retrouve le circuit de l’oscillateur (identique à celui de la figure 4 de la théorie 25) formé par le circuit résonnant L4 et CV2 auquel on vient coupler l’inductance L3 de collecteur et L5 de réaction de l’émetteur.

De cette manière, le transistor fonctionne comme un oscillateur monté en base commune.

On retrouve encore le circuit mélangeur de la figure 3, constitué par le circuit d’entrée L1 et CV1 accordé sur la fréquence du signal reçu et couplé à la base du transistor par le secondaire L2. Le couplage au premier transformateur FI est formé par C6 et L6 avec prise intermédiaire pour la liaison au collecteur. Le secondaire L7 sert à la liaison avec l’étage suivant.

Le transistor fonctionne aussi comme mélangeur, de la même façon que le circuit de la figure 3 et se trouve monté en émetteur commun.

C’est le cas typique d’un transistor fonctionnant simultanément selon deux types de montage et accomplissant deux fonctions différentes.

L’utilisation du montage en émetteur commun pour accomplir la fonction de mélangeur et celle en base commune pour la fonction d’oscillateur permet au transistor de travailler simultanément sans qu’une fonction perturbe l’autre.

Le convertisseur auto-oscillant présente encore d’autres avantages par rapport à celui de l’oscillateur séparé. Les résultats sont pratiquement identiques dans les deux cas, et on fait l’économie d’un transistor.

Par contre, l’absence de l’étage HF amène obligatoirement le récepteur à être moins sensible et de sélectivité moindre, puisqu’il manque le circuit résonnant de transformateur de liaison entre TR1 et TR2 de la figure 3.

La simplification obtenue par l’intermédiaire de l’amplification HF (outre le fait qu’il y a un transistor en moins), permet encore d’utiliser un condensateur variable à deux cages seulement (CV1 et CV2 de la figure 6) beaucoup moins coûteux et encombrant que celui à trois cages de la figure 3.

En conclusion nous dirons que l’étage amplificateur HF donne une sensibilité élevée au récepteur (nécessaire par exemple dans le cas des auto-radios), et une forte atténuation de la fréquence-image comme nous allons le voir dans le chapitre suivant. Par contre le changeur de fréquence avec oscillateur séparé ne présente aucun avantage par rapport à celui auto-oscillant ; c’est un luxe inutile.

2 – 3 FRÉQUENCE-IMAGE

Nous avons examiné jusqu’à maintenant les aspects positifs des circuits changeur de fréquence, c’est-à-dire les avantages que ceux-ci présentaient par rapport aux circuits classiques. Nous allons voir maintenant un aspect négatif, c’est-à-dire un inconvénient non négligeable et dont les conséquences peuvent être très importantes dans certains cas.

Rappelez-vous ce qui a été dit au sujet du mécanisme du changement de fréquence ; le signal à fréquence intermédiaire naît du battement entre le signal reçu fs et le signal de fréquence fo de l’oscillateur.

En général, pour des raisons pratiques, la fréquence de l’oscillateur est toujours supérieure à celle du signal reçu, mais ce n’est pas une condition impérative pour obtenir le changement de fréquence ; la fréquence de l’oscillateur peut être inférieure aussi à celle du signal.

La condition indispensable pour obtenir un signal de fréquence intermédiaire à 480kHz est que la différence entre fs et fo soit exactement de 480kHz et peu importe laquelle des deux fréquences est plus élevée.

Reprenons si vous le voulez bien, l’exemple de la réception d’un signal de 1MHz : pour plus de clarté, je vous l’ai illustré à la figure 7.

Si le récepteur est accordé pour recevoir un signal de 1MHz, le circuit d’entrée est accordé lui aussi sur cette fréquence (fs = 1000kHz) et l’oscillateur sur une fréquence plus élevée de 480kHz (fo = 1480kHz). Supposons maintenant, qu’il y ait un autre signal, de fréquence supérieure à fo et qui soit plus élevée de 480kHz, c’est-à-dire que la fréquence de ce signal soit : 1480 + 480 = 1960kHz. Ce signal est indiqué par fi sur la figure 7.

Comme nous l’avons vu précédemment, ce signal va battre avec l’oscillateur et donnera naissance à un signal de fréquence intermédiaire de 480kHz.

En effet, la différence entre les fréquences de ces signaux et celle de l’oscillateur sont respectivement :

Les deux signaux vont être alors amplifiés simultanément par les amplificateurs FI qui suivent l’étage changeur de fréquence, et il n’y aura plus aucune possibilité de séparer les signaux puisqu’ils sont maintenant de même fréquence.

L’inconvénient dont je vous ai parlé tout à l’heure apparaît maintenant. Le changeur de fréquence ne peut séparer les deux signaux, qui se superposent et donnent une réception distordue soit par l'un, soit par l’autre.

En examinant la figure 7, nous pourrons affirmer ce qui suit : en accordant le récepteur sur une fréquence donnée fs, on peut recevoir en plus un autre signal, de fréquence fi supérieure à fs exactement du double de la fréquence intermédiaire FI. Ce second signal prend le nom de signal image et sa fréquence est dite fréquence image.

Dans le cas des récepteurs dont la FI est de 480kHz comme cela arrive souvent, la fréquence image est toujours plus élevée que la fréquence d’accord de : 2 x 480 = 960kHz

Dans l’exemple considéré, on a en effet :

fi = fs + 960 = 1000 + 960 = 1960kHz (figure 7).

Pour éviter que le signal image interfère avec le signal que l’on désire recevoir, il faut lui interdire l’entrée du récepteur.

Pour éliminer le signal image, on ne peut jouer que sur les circuits sélectifs qui précèdent le changeur de fréquence, c’est-à-dire sur le circuit résonnant d’antenne et sur celui (quand il existe) qui constitue le transformateur de liaison entre l’amplificateur HF et le changeur.

En effet, si le récepteur est accordé sur la fréquence fs = 1000kHz comme nous l’avons supposé, le circuit d’entrée est accordé lui aussi sur cette fréquence et sa courbe de résonance peut être représentée avec le maximum en correspondance de fs (figure 7).

Sur la même figure vous pouvez voir que le signal image tombe sur un flanc de la courbe de résonance (point 2) et que son amplitude résultante peut être plus ou moins réduite selon la forme de la courbe de résonance. Si le circuit d’entrée est très sélectif (courbe en traits pleins sur la figure 7), le signal fi est très atténué : son amplitude se trouve réduite par exemple à 10%.

Si au contraire la sélectivité du circuit d’entrée est faible (courbe en pointillés sur la figure 7), le signal image se trouve peu atténué (point 2’) et pourra encore perturber fortement le signal que l’on désire recevoir en interférant avec lui.

Dans la gamme des petites ondes et encore plus dans celle des grandes ondes, les inconvénients de la fréquence image ne sont en réalité pas toujours aussi graves que l’on pourrait penser au premier abord.

Il suffit tout d’abord de penser qu’il n’y a pas forcément toujours, lorsque l’on désire recevoir un signal, un autre signal présent exactement sur la fréquence image ; et même si ce signal existe, il n’est pas du tout certain que son amplitude sera telle qu’elle perturbe le signal utile.

Dans ces gammes d’ondes, la fréquence image résultante est toujours très élevée par rapport à celle du signal (dans le cas de l’exemple, fi est presque double de fs). Dans la majorité des cas, la sélectivité du circuit d’antenne suffit pour réduire l’amplitude du signal image à des valeurs non dangereuses. Il suffit de faire un simple calcul pour établir que si le circuit d’antenne a un coefficient de qualité Q de 40 par exemple (ce qui peut être réalisé très facilement avec les antennes ferrite), le signal image se trouve réduit à un centième environ : on a obtenu ainsi une grande marge de sécurité contre les interférences.

Par contre, en onde courtes, les résultats sont un peu moins bons. En effet, plus la fréquence du signal reçu est élevée, plus la fréquence image est proche, et plus il est difficile de la séparer.

Supposons en effet que le signal à recevoir est de 10MHz. La fréquence-image est alors : 10 + 0960 = 10,960MHz, c’est-à-dire qu’elle est très près des 10MHz (figure 8).

Si nous dessinons la courbe de résonance du seul circuit d’antenne (en supposant qu’il n’y a pas d’étage HF) et si nous supposons que la valeur de Q est de l’ordre de 30 (ce qui en pratique est facilement réalisable à ces fréquences) nous obtenons la courbe en pointillés de la figure 8. Nous voyons alors que le signal image est réduit à environ 20% par la sélectivité du circuit.

Si au contraire, il y a un étage HF et si nous admettons encore que le Q du circuit est de 30, la courbe résultante est celle qui est tracée en traits pleins (figure 8). Le signal image est alors réduit à 4% environ.

L’avantage d’un étage HF est évident par cet exemple : il y a réduction du signal image et une sensibilité plus grande du récepteur.

La réception du signal image, dans la gamme des ondes courtes en général (et dans quelques cas particuliers en petites ondes) donne lieu, outre à des interférences éventuelles, à la possibilité de recevoir le même signal, c’est-à-dire la même station, en deux points différents du cadran.

Il suffit en effet d’observer la figure 8, pour voir que le signal de fréquence fs, peut être reçu, non seulement lorsque le récepteur est accordé sur cette fréquence, mais aussi quand il est accordé sur une fréquence f’s inférieure à fs exactement du double de la valeur FI, c’est-à-dire de 960kHz. Dans ces conditions, le signal fs est reçu comme signal image, étant donné que fs se trouve distante de la fréquence f’o de l’oscillateur de 480kHz exactement et qu’elle se trouve convertie à la valeur précise de la FI.

CONCLUSION :

Le changement de fréquence a l’inconvénient de permettre la réception simultanée de deux stations (signal utile et signal image) ou, ce qui revient au même, permettre la réception de la même station en deux points du cadran distincts de 960kHz (si la FI = 480kHz) ou de 910kHz (si la FI = 455kHz).

Ces inconvénients ne peuvent être atténués que par la sélectivité des circuits qui précèdent le changeur ; pour cela, il faut choisir un circuit d’antenne dont le facteur de qualité Q soit suffisamment élevé ; quand cela n’est pas possible, il faut avoir recours à un étage amplificateur HF.


EXERCICES DE RÉVISION SUR LA 26ème LEÇON THÉORIQUE

1 – En quoi consiste le changement de fréquence ?

2 – Quels sont les avantages que l’on obtient avec le changeur de fréquence ?

3 – De quel type est l’amplificateur HF ?

4 – Sur quel critère doit-on se baser pour choisir le point de fonctionnement du premier étage ?

5 – Qu’est le ferrite ?

6 – Quels sont les avantages de l’antenne magnétique (c’est-à-dire à ferrite) par rapport à l’antenne capacitive ?

7 – Comment obtient-on la fréquence intermédiaire ?

8 – Comment définit-on la fréquence image ?

9 – Comment peut-on réduire la réception du signal image ?


RÉPONSES AUX EXERCICES DE RÉVISION SUR LA 25ème LEÇON THÉORIQUE

1 – On appelle oscillateur un circuit capable d’engendrer des oscillations.

2 – Il n’y a pas, à proprement parler de différence, entre un oscillateur BF et HF, à part la valeur de la fréquence. Les premiers sont du domaine acoustique, les autres des fréquences Radio.

3 – Un oscillateur est dit LC quand la fréquence des oscillations est déterminée par la résonance d’un circuit résonnant ; il est dit au contraire RC, quand la fréquence des oscillations est déterminée par un réseau, constitué uniquement de résistances et de capacités.

4 – On appelle réseau de réaction, le circuit qui sert à ramener le signal de sortie à l’entrée de l’étage.

5 - Un réseau de réaction fait en sorte de ramener le signal à l’entrée avec la phase et l’amplitude convenable, pour que l’étage puisse osciller.

6 – Quand le gain complexe de l’étage est supérieur à 1, le circuit est capable d’engendrer des oscillations.

7 – Un transistor utilisé en oscillateur base à la masse est capable d’engendrer des oscillations de fréquence beaucoup plus élevée qu’en montage émetteur à la masse.

8 – Dans le montage Hartley, le signal de réaction est obtenu en utilisant une self à prise intermédiaire ; dans le montage Colpitts on utilise au contraire deux capacités en série et une self sans prise.

9 – Un oscillateur RC à déphasage ne peut être réalisé en montage base à la masse, parce qu’avec un tel montage, on ne peut obtenir un gain en courant suffisant pour le fonctionnement d’un tel type d’oscillateur.

Fin de la leçon 26


LECON 27

AMPLIFICATEUR FI

Le signal à fréquence intermédiaire, prélevé à la sortie de l’étage changeur de fréquence que nous avons étudié dans la précédente leçon est appliqué à l’amplificateur FI de façon à pouvoir être amplifié énergiquement. Comme on a affaire à un signal qui est toujours de même fréquence (480kHz par exemple), il est évident que l’amplificateur FI sera du type sélectif à fréquence fixe, comme celui que nous avons étudié dans la 23ème leçon théorique.

Etant donné qu’en général un seul étage ne suffit pas à amener l’amplitude du signal à niveau convenable pour être détecté, l’amplificateur FI sera normalement constitué par deux étages identiques placés en cascade, couplés entr’eux et, au circuit détecteur qui les suit par l’intermédiaire de transformateurs accordés. Ces derniers pourront être du type à primaire seul accordé, ou bien à primaire et secondaire accordés.

Le schéma de principe d’un amplificateur FI pourra alors être du type de l’étage représenté en figure 9 de la théorique 24. Il sera constitué de deux étages en cascade.

Il va en résulter le schéma reporté en figure 1, où je vous ai représenté le primaire et le secondaire des transformateurs FI accordés tous les deux.

Le troisième transformateur FI a seulement son primaire accordé ; mais il est du même type que les deux premiers.

Comme nous l’avons vu en son temps (théoriques 23 et 24), le fait d’avoir les secondaires accordés confère au récepteur une meilleure sélectivité, c’est-à-dire une aptitude meilleure à séparer entr’elles deux stations voisines ; mais ceci entraine des transformateurs plus coûteux. C’est ainsi que les récepteurs du type portable n’ont en général que le primaire accordé.

Le premier transformateur FI sert à relier l’étage changeur de fréquences au premier étage amplificateur FI constitué par le transistor TR2. La prise intermédiaire de ce transformateur est reliée à la sortie du transistor qui fonctionne comme changeur de fréquences.

Le premier transformateur FI, représenté en figure 1, est le même que celui qui a été représenté en figures 3 et 6 de la leçon théorique 25.

Les étages FI sont composés des transistors TR2 et TR3 montés en émetteur à la masse. Ils sont polarisés et stabilisés du point de vue thermique par l’intermédiaire respectivement des résistances R7 et R10. Les bases sont polarisées à l’aide des ponts de résistances R5 et R6 pour TR2 et R8 – R9 pour TR3 ; les polarisations se font à travers les enroulements secondaires L7 et L9 des transformateurs de liaison.

Les condensateurs C11, C12, C13 et C14 servent comme à l’habitude à supprimer les effets de contre-réaction des circuits de polarisation sur les signaux FI.

Du secondaire L11 du troisième transformateur FI on prélève le signal FI amplifié, pour l’appliquer au circuit détecteur non représenté en figure 1.

Selon le type des transistors utilisés, le schéma de la figure 1 peut encore être complété par des circuits de neutrodynage (non dessinés sur la figure) comme nous l’avons vu dans la théorie 24.

Les points de fonctionnement de TR2 et TR3 sont choisis encore en se basant sur la notion du "bruit de fond" : en général ils sont choisis pour que les courants de collecteur soient de l’ordre de 0,5 à 1mA.

Les transformateurs FI sont toujours enfermés dans des boitiers métalliques (indiqués par des rectangles en pointillés sur la figure 1) qui sont réunis à la masse. La réalisation pratique des transformateurs est faite selon l’un des deux schémas illustrés en figure 5 de la théorique 24.

1 – 1 CIRCUIT DE DÉTECTION

A la sortie de l’amplificateur FI, le signal a une amplitude de l’ordre de 0,5V à 1V (ou même plus) selon l’intensité du signal reçu et une fréquence de 480kHz quelle que soit la fréquence du signal reçu : mais ce signal sera toujours constitué par une porteuse (à 480kHz) modulée en amplitude exactement comme le signal capté par l’antenne.

Pour obtenir le signal de basse fréquence, c’est-à-dire celui qui constitue "l’information" transmise (ou en d’autre termes, le signal qui a été utilisé pour moduler la porteuse), il faut démoduler le signal FI à l’aide d’un circuit détecteur (ou démodulateur).

Ce dernier est constitué comme on peut le voir en figure 2a, par une diode dite Diode de détection (ou détecteur) et par un condensateur et une résistance placés en parallèle et formant le circuit RC de détection ; la diode et l’ensemble RC, sont placés en série et sont reliés directement aux bornes du secondaire L11 du dernier transformateur FI.

Pour étudier le comportement du circuit détecteur, il faut avant tout considérer l’allure du signal qu’on lui applique, c’est-à-dire la forme du signal que l’on trouve à la sortie de l’amplificateur FI. Celui-ci, comme nous l’avons déjà vu, est constitué par une porteuse à 480kHz, modulée en amplitude. Cette porteuse est représentée par une onde sinusoïdale dont l’amplitude reste constante en l’absence de modulation (région A de la figure 2b) et qui varie autour de cette valeur quand elle est modulée (comme par exemple dans la région B (figure 2b). Dans ce dessin pour simplifier j’ai considéré que la modulation était sinusoïdale.

Comme la diode ne conduit que lorsque son anode est positive par rapport à la cathode, il est évident qu’elle ne laissera passer que l’alternance positive du signal à fréquence intermédiaire, et chargera le condensateur C à la valeur de crête. La tension aux bornes de C aura donc comme valeur Vc égale à la valeur de crête Vp de l’alternance positive.

Dans la région A de la figure 2b, la tension Vc reste de valeur constante, parce que l’amplitude des crêtes du signal FI est elle-même constante. Dans la région B par contre, la tension aux bornes de C augmente et diminue autour de cette valeur en suivant l’allure de la modulation.

Aux bornes de C, ou mieux, aux bornes du circuit de détection RC, nous avons un signal qui peut être considéré comme composé d’une composante continue Vo (figure 2c) de valeur constante et égale à la valeur de crête de la porteuse non modulée à laquelle vient se superposer une composante alternative qui est l’enveloppe de la modulation et qui constitue à proprement parler le signal basse fréquence, indiqué VBF sur la même figure.

En réalité le phénomène de la détection est plus compliqué en ce sens qu’il faut encore tenir compte du comportement du circuit de détection dans l’intervalle de temps qui s’écoule entre une alternance positive et la suivante.

Il est bon de se rappeler brièvement comment se fait la décharge d’un condensateur sur une résistance. Considérons pour cela le circuit de la figure 3a lorsque l’on ferme l’interrupteur S, le condensateur C se trouve branché directement aux bornes de la pile et se trouve donc chargé à la tension de cette dernière. Supposons que la pile ait une tension Vcc de 10 V : la tension Vc aux bornes du condensateur sera donc de 10V.

Ouvrons maintenant l’interrupteur : le condensateur va commencer par se décharger dans la résistance R et la tension Vc à ses bornes va diminuer.

Au fur et à mesure que le condensateur se décharge, la tension Vc (qui est aussi la tension aux bornes de R, puisque Ret C sont en parallèle) diminue et suit l’allure représentée en figure 3b.

La tension Vc décroît d’abord très rapidement, puis toujours de plus en plus lentement et tend graduellement à s’annuler. On démontre que l’allure de la tension Vc suit une loi bien déterminée, que les mathématiciens appellent "exponentielle" : c’est pour cette raison que l’on dit que la tension suit une "loi exponentielle".

Par intuition, on "sent" que la décharge du condensateur sera d’autant plus rapide que la capacité est plus faible, parce que la charge accumulée est elle-même faible, ou bien que la résistance est plus petite, parce qu’alors le courant de décharge du condensateur est plus grand.

D’une façon plus exacte, la décharge dépend du produit de la valeur de C par la valeur de R, produit qui prend le nom de constante de temps : si l’on exprime C en nF et R en kΩ, le produit RC sera donné enµS (microsecondes, c’est-à-dire en millionième de seconde). Par exemple, si C = 4 nF et R= 10kΩ, on aura RC = 4 x 10 = 40µS.

La valeur de la constante de temps RC détermine exactement la décharge du condensateur, en ce sens que dans chaque intervalle de temps égal à la valeur RC, la tension aux bornes de C diminue de 2,72 fois. Ainsi dans le cas de l’exemple, comme RC = 40µS, la tension aux bornes de C part de la valeur de 10V et se réduira à la valeur de 10 / 2,72 = 3,67V au bout d’un temps égal à la valeur de RC, c’est-à-dire en 40µS. Au bout d’un autre temps de 40µS, la tension va encore diminuer de 2,72 fois et deviendra : 3,67 / 2,72 = 1,35V et ainsi de suite.

D’une façon plus générale, nous dirons que la tension Vc part d’une valeur de charge égale à 100% et se réduit à 100 / 2,72 = 36,7% de sa valeur en un intervalle de temps égal à RC. Dans un second intervalle de temps égal à RC, la tension se réduit à 36,7 / 2,72 = 13,5% de sa valeur primitive. Après un troisième intervalle de temps égal à RC, la tension est devenue : 13,5 / 2,72 = 5% de ce qu’elle était au départ, et ainsi de suite.

Le courant qui traverse la résistance suit une loi semblable ; quand l’interrupteur est fermé, le courant est :

Vcc / R=10V / 10kΩ = 1mA.

Ensuite, il décroit en suivant une loi semblable à celle de la tension Vc lorsque l’on a ouvert l’interrupteur.

Après cette parenthèse sur le comportement de la décharge du condensateur, nous pouvons revenir au circuit de détection de la figure 2a.

Nous remplacerons seulement la pile de la figure 3a par le secondaire du transformateur FI qui délivre une tension alternative à la fréquence de 480kHz.

La diode pourra être assimilée à un interrupteur qui est fermé quand la diode conduit, c’est-à-dire lorsque l’anode est positive par rapport à la cathode, et ouvert quand l’anode est négative par rapport à la cathode. En première approximation, nous pourrons donc dire que la diode se comporte comme un interrupteur fermé pendant l’alternance positive et comme un interrupteur ouvert pendant l’alternance négative.

Si l’on considère alors la tension délivrée par L11 et appliquée à l’anode de la diode (je vous refais le dessin de la figure 2b à la figure 4a), on peut dire que pendant l’alternance positive, la diode conduit et le condensateur se charge à la valeur de crête Vp quand l’alternance atteint sa valeur maximum.

A partir ce cet instant (A sur la figure 4a), la tension appliquée sur l’anode diminue rapidement en suivant une loi sinusoïdale, tandis que la tension aux bornes du condensateur diminue plus lentement en suivant une loi exponentielle que nous venons de voir.

Comme la tension aux bornes de C est celle-là même qui se trouve sur la cathode de la diode, vous voyez que la tension sur la cathode est positive et plus élevée que celle qui se trouve sur l’anode : pour cette raison, la diode ne conduit plus et le circuit se comporte comme celui de la figure 3a quand l’interrupteur a été ouvert.

La décharge de C va se produire jusqu’à l’instant B (figure 4a) : à cet instant la tension appliquée sur l’anode de la diode va se trouver de nouveau légèrement plus élevée que celle sur la cathode ; la diode va conduire à nouveau et va recharger C à la valeur de crête de la tension FI. Le phénomène va se répéter à chaque cycle de la fréquence intermédiaire ; la tension aux bornes du circuit RC va donc se présenter en dents de scie (ligne dessinée en gras sur la figure 4a), et suivant aussi l’enveloppe de la modulation.

L’amplitude de la "dentelure" dépend évidemment de la proportion dont se décharge le condensateur dans l’intervalle de temps qui s’écoule entre une alternance et l’autre ; elle est d’autant moins grande que le condensateur se décharge moins, c’est-à-dire que la constante de temps du circuit de détection RC est elle-même plus grande.

Pour obtenir ainsi une tension détectée qui suit parfaitement l’allure de l’enveloppe de modulation, comme indiqué en figure 2c, il s’agit de choisir une constante de temps élevée, c’est-à-dire très grande par rapport à l’intervalle de temps qui s’écoule entre deux crêtes successives de la tension FI ; cet intervalle de temps n’est autre que la période de la fréquence intermédiaire, dont la valeur est :

TFI = 1/fFI = 1/0,480 = 2,08µS

La constante de temps du circuit RC ne peut toutefois être rendue trop grande : sinon un phénomène particulier apparait.

Considérons la région D (figure 4a) où l’enveloppe de la modulation décroît rapidement ; si le condensateur se décharge trop lentement, il peut arriver que la tension aux bornes du circuit RC, au lieu de suivre l’enveloppe de modulation comme en figure 4a, décroisse comme en figure 4b.

Dans ce cas, la tension détectée est loin d’avoir la forme de l’enveloppe ce qui indique que la tension basse fréquence résultante est distordue. Ce type de distorsion est appelé "distorsion en diagonale".

Pour éviter cet inconvénient, il faut encore que la constante de temps du circuit de détection soit petite par rapport à l’intervalle de temps qui s’écoule entre deux crêtes successives de l’enveloppe de modulation.

Cet intervalle de temps n’est autre que la période de la fréquence de modulation. Il faut donc prendre en considération la période de la fréquence maximum de modulation que l’on désire transmettre.

Dans le cas des transmissions en modulation d’amplitude, la valeur maximum de la fréquence est de 4,5kHz ; la valeur de TBF à considérer est :

TBF = 1/(4,5kHz) = 0,222mS = 222µS

Pour un bon détecteur, la valeur de la constante de temps devra donc être beaucoup plus grande que 2,08µS pour réduire la dentelure, et beaucoup plus faible que 222µS pour éviter la distorsion. En pratique on prend pour RC une valeur comprise entre 20µS et 60µS. En prenant par exemple, une constante de temps de 50µS, celle-ci pourra être réalisée en prenant C = 10 nF et R= 5kΩ.

On démontre encore que le circuit de détection se comporte, vis-à-vis du transformateur FI, comme une charge dont la valeur est égale à R/2 ; ainsi dans l’exemple précédent où Rétait égale à 10kΩ, le rapport de transformation du transformateur FI devra être calculé comme si l’on devait charger le secondaire L11 par une résistance de 10/2 = 5kΩ.

Le signal présent à la sortie du détecteur se partage en ses deux composantes : la composante alternative est envoyée vers les étages basse fréquence ; la composante continue dont l’amplitude est proportionnelle à l’amplitude du signal HF reçu (elle est en effet égale à l’amplitude de crête de la porteuse non modulée) sert pour le circuit RAS (régulateur automatique de sensibilité) que nous allons voir maintenant.

La séparation des deux composantes peut être faite très simplement à l’aide des circuits représentés en figure 5.

Pour obtenir seulement la composante alternative, on peut en effet bloquer la composante continue par une liaison RC, comme dans le cas des liaisons entre étages des amplificateurs. Le condensateur CA va bloquer en effet, la composante continue et aux bornes de RA on ne trouvera plus que la composante alternative, c’est-à-dire le signal de basse fréquence.

Pour éliminer au contraire la composante alternative et récupérer uniquement la seule composante continue, il suffit d’utiliser le circuit RB CB.

De cette manière, le condensateur va se comporter comme un filtre de nivellement et rendra la tension à ses bornes constante c’est-à-dire insensible aux variations dûes à la modulation, se comportant de la même manière que le condensateur d’émetteur d’un transistor qui rend la tension de polarisation constante.

1 – 2 CIRCUIT RAS

Le circuit RAS, comme nous l’avons déjà vu, a pour rôle de régler de façon tout à fait automatique la sensibilité du récepteur en se basant sur l’intensité du signal reçu, de façon qu’il soit très sensible lors d’une réception faible et peu sensible en présence d’un signal fort.

On a ainsi l’avantage d’avoir à la sortie du détecteur un signal qui reste pratiquement constant quand on passe d’une station forte à une faible. Ainsi, le volume sonore reste constant quand on écoute une station dont l’intensité varie pour des raisons de propagation, comme le fameux phénomène dit de "fading" propre à la propagation ionosphérique et qui est typique dans les transmissions en ondes courtes.

Un autre avantage du RAS est d’éviter qu’avec des signaux forts, on ne sature le dernier étage FI : l’enveloppe de modulation serait distordue avec comme conséquence une distorsion du signal basse fréquence.

Le réglage de la sensibilité du récepteur se fait en agissant sur le gain du premier étage FI et sur celui de l’étage HF quand ce dernier existe. Pour ce réglage, on exploite la composante continue délivrée par le détecteur (qui comme nous l’avons vue, est d’autant plus grande que le signal reçu est plus intense).

Le schéma le plus simple d’un circuit RAS est indiqué en figure 6.

La résistance R6 du pont de résistances de polarisation de la base de TR2 est branchée à la sortie du détecteur au lieu d’être reliée à la masse comme sur la figure 1. De cette manière, la tension de polarisation de la base de TR2 dépend aussi de la composante continue délivrée par le détecteur.

En l’absence de signal, TR2 est polarisé normalement : en présence d’un signal au contraire, le point A (sortie du détecteur de la figure 6) devient positif par rapport à la masse et, en conséquence, le point B (auquel est reliée la base de TR2 à travers le secondaire L 7) devient moins négatif.

Ceci correspond à une réduction du courant de polarisation de la base de TR2, réduction qui est d’autant plus forte que la tension positive est plus grande, c’est-à-dire que le signal reçu est plus intense.

La réduction du courant de polarisation de la base comporte une réduction du courant du collecteur, c’est-à-dire une variation des paramètres du transistor. Si, en l’absence du signal, le transistor travaille dans des conditions de gain maximum, il est évident qu’une variation quelconque de ces conditions a pour effet de réduire le gain.

En comparant le circuit de la figure 6 avec celui de la figure 5, on peut remarquer que la fonction de filtrage accomplie précédemment par RB CB est maintenant réalisée par la résistance R6 elle-même et le condensateur C 11.

Le circuit de la figure 6 n’est pas très efficace et on pourrait penser l’améliorer en faisant agir aussi le RAS sur TR3. Mais ce système n’est pas utilisé en général, pour éviter qu’avec de forts signaux, c’est-à-dire quand les transistors sont amenés à travailler avec de faibles courants de collecteur et très près du cut-off, TR3 ne puisse distordre le signal qu’on lui applique car celui-ci est déjà d’une amplitude notable.

Une amélioration du circuit est cependant obtenue en modifiant ultérieurement le schéma comme indiqué en figure 7 ; on ajoute une diode D2 qui prend le nom de diode d’amortissement et dont le fonctionnement est le suivant.

En l’absence de signal, le courant de collecteur de TR2 est fort, ainsi que la chute de tension aux bornes de R12 (si par exemple elle est de 2V et que Vcc = 9V, la tension au point M sera de 7 V).

Dans ces conditions, en choisissant convenablement la valeur de R11 on peut obtenir aux bornes de celle-ci une chute de tension qui serait par exemple seulement de 1V, c’est-à-dire que la tension du collecteur de TR1 (ainsi que le point N) serait de 8V.

La diode, branchée avec son anode au point N et sa cathode au point M, a son anode à – 8V, tandis que la cathode se trouve à – 7V. La polarisation de la diode est donc telle que l’anode est plus négative que la cathode ; la diode est donc bloquée, elle se comporte comme un interrupteur ouvert et n’a aucune influence sur le fonctionnement du circuit.

Si maintenant on reçoit un signal, comme nous l’avons vu dans le schéma de la figure 6, le courant de TR2 diminue : la chute de tension aux bornes de R12 diminue aussi et le point M monte vers des valeurs négatives plus élevées (devient plus négatif), tandis que la tension au point N reste toujours à la même valeur, car le courant de TR1 n’est pas contrôlé par le circuit RAS.

Lorsque l’intensité du signal reçu augmente, la tension du point M augmente aussi, c’est-à-dire la tension de la cathode de la diode. Dès que la valeur de la tension de la cathode atteint celle de l’anode, la diode commence à conduire (la cathode devient en effet plus négative que l’anode). La diode se comporte alors comme une résistance de valeur d’autant plus faible que la tension de la cathode est plus grande, c’est-à-dire que le signal reçu est plus intense.

Comme la diode se trouve branchée, en ce qui concerne la composante alternative du signal amplifié par TR1, en parallèle sur le circuit résonnant L 6 – C 6 celui-ci sera amorti d’autant plus que l’intensité du signal reçu sera plus forte : ainsi le gain de l’étage se trouvera d’autant plus réduit.

L’action de la diode d’amortissement s’ajoute à celle obtenue directement avec TR2 qui se comporte de la même manière que précédemment (cas du schéma de la figure 6). Le circuit de la figure 7 se trouve être beaucoup plus efficace que précédemment, mais en revanche il est plus complexe et plus onéreux.

Nous en avons ainsi terminé avec l’étude des amplificateurs FI et des circuits de commande automatique de sensibilité (CAS ou RAS). Nous commencerons dans la prochaine leçon l’étude des circuits amplificateurs à basse fréquence.

Dans ces conditions, en choisissant convenablement la valeur de R11 on peut obtenir aux bornes de celle-ci une chute de tension qui serait par exemple seulement de 1V, c’est-à-dire que la tension du collecteur de TR1 (ainsi que le point N) serait de 8V.

La diode, branchée avec son anode au point N et sa cathode au point M, a son anode à – 8V, tandis que la cathode se trouve à – 7V. La polarisation de la diode est donc telle que l’anode est plus négative que la cathode ; la diode est donc bloquée, elle se comporte comme un interrupteur ouvert et n’a aucune influence sur le fonctionnement du circuit.

Si maintenant on reçoit un signal, comme nous l’avons vu dans le schéma de la figure 6, le courant de TR2 diminue : la chute de tension aux bornes de R12 diminue aussi et le point M monte vers des valeurs négatives plus élevées (devient plus négatif), tandis que la tension au point N reste toujours à la même valeur, car le courant de TR1 n’est pas contrôlé par le circuit RAS.

Lorsque l’intensité du signal reçu augmente, la tension du point M augmente aussi, c’est-à-dire la tension de la cathode de la diode. Dès que la valeur de la tension de la cathode atteint celle de l’anode, la diode commence à conduire (la cathode devient en effet plus négative que l’anode). La diode se comporte alors comme une résistance de valeur d’autant plus faible que la tension de la cathode est plus grande, c’est-à-dire que le signal reçu est plus intense.

Comme la diode se trouve branchée, en ce qui concerne la composante alternative du signal amplifié par TR1, en parallèle sur le circuit résonnant L 6 – C 6 celui-ci sera amorti d’autant plus que l’intensité du signal reçu sera plus forte : ainsi le gain de l’étage se trouvera d’autant plus réduit.

L’action de la diode d’amortissement s’ajoute à celle obtenue directement avec TR2 qui se comporte de la même manière que précédemment (cas du schéma de la figure 6). Le circuit de la figure 7 se trouve être beaucoup plus efficace que précédemment, mais en revanche il est plus complexe et plus onéreux.

Nous en avons ainsi terminé avec l’étude des amplificateurs FI et des circuits de commande automatique de sensibilité (CAS ou RAS). Nous commencerons dans la prochaine leçon l’étude des circuits amplificateurs à basse fréquence.


EXERCICES DE RÉVISION SUR LA 27ème LEÇON THÉORIQUE

1 – Quel est le type de l’amplificateur FI ?

2 – Quelle sorte de signal le détecteur délivre-t-il ?

3 – Par quoi est donnée la constante de temps d’un circuit RC ?

4 – Qu’exprime la constante de temps RC ?

5 – Calculer la constante de temps d’un circuit RC où R= 1 MΩ et C = 250 pF.

6 – A quoi sert le RAS ?

7 – A quelle tension se charge le condensateur du circuit de détection en l’absence de modulation ?

8 – Quelle doit être la polarité de la tension RAS dans un récepteur à transistors ?

9 – Lorsqu’un condensateur C se décharge dans une résistance quelle est la valeur de la tension atteinte au bout d’un intervalle de temps égal à la constante de temps ?


RÉPONSES AUX EXERCICES DE RÉVISION SUR LA 26ème LEÇON THÉORIQUE

1 – Le changement de fréquence consiste à convertir la fréquence du signal reçu, quel qu’il soit, en une valeur fixe de 480kHz (par exemple).

2 – Les avantages du changement de fréquence résident en une plus grande simplicité des circuits des récepteurs et dans une meilleure sélectivité obtenue.

3 – L’amplificateur HF est du type sélectif et à accord variable.

4 – Le point de fonctionnement du premier étage est choisi de façon à ce que le "bruit de fond" produit par le transistor soit le plus faible possible.

5 – Le ferrite est un matériau céramique dont les qualités magnétiques restent bonnes même aux fréquences élevées ; de plus il n’est pas conducteur.

6 – L’antenne magnétique (à ferrite) est plus avantageuse par rapport à l’antenne capacitive parce qu’elle est moins sensibles aux parasites.

7 – La fréquence intermédiaire est donnée par la différence entre la fréquence du signal reçu et celle de l’oscillateur.

8 – On appelle fréquence-image, la fréquence qui diffère de la fréquence d’accord (et lui est supérieure) du double de la valeur de la fréquence intermédiaire.

9 – Le signal-image ne peut être réduit que par des circuits sélectifs qui précèdent le changeur de fréquence.

Fin de la leçon 27


LECON 28

CIRCUITS AMPLIFICATEURS A BASSE FRÉQUENCE

Nous avons déjà étudié les amplificateurs basse fréquence dans les cours théoriques 17 à 22 ; nous n'avons donc pas besoin de les réétudier.

Nous allons examiner seulement comment ils s’insèrent dans le circuit général du récepteur.

Un schéma type de la partie basse fréquence d’un récepteur peut être celui indiqué en figure 1. Vous pouvez y voir un premier étage préamplificateur couplé capacitivement à un second étage, qui délivre une puissance suffisante pour commander l’étage final qui est en général du type push-pull fonctionnant en classe AB.

Ces différents étages sont en tout point identiques à ceux que nous avons étudiés séparément dans les leçons précédentes. La seule nouveauté réside dans les contrôles manuels de volume et de tonalité.

Le contrôle manuel de volume sert au réglage du volume sonore de la parole ou de la musique reproduites dans le haut-parleur. Il est en général constitué par un potentiomètre (P1 de la figure 1) à l’aide duquel on vient prélever une fraction plus ou moins grande du signal basse fréquence délivré par le détecteur.

En effet, comme on peut le voir d’après le schéma de la figure 1, quand le curseur de P1 se trouve en position haute, toute la tension présente aux bornes du potentiomètre (c’est-à-dire toute la tension délivrée par le détecteur) est appliquée sur la base de TR4 et on obtient ainsi un volume sonore maximum.

En déplaçant le curseur vers le bas, la tension appliqué sur la base de TR4 se trouve de plus en plus réduite et s’annule complètement quand le curseur de P1 se trouve en position basse (minimum de volume).

Le contrôle de tonalité s’effectue en général à la sortie de l’étage préamplificateur (TR4 de la figure 1) et comme je l’ai déjà dit, agit sur la bande passante de l’amplificateur basse fréquence.

Le type le plus couramment utilisé agit seulement sur les fréquences élevées, c’est-à-dire sur la fréquence de coupure supérieure de l’amplificateur ; s’il est du type à réglage continu, il peut être réalisé à l’aide d’un potentiomètre en série avec un condensateur (P2 et C21 de la figure 1) branchés entre le collecteur du transistor et la masse.

Le fonctionnement en est très simple. Quand le potentiomètre est tourné du côté de la résistance minimum, le condensateur se trouve branché directement entre le collecteur et la masse. La fréquence de coupure supérieure est alors réduite à une certaine valeur, déterminée par la capacité C21 (revoir la leçon théorique 22). Dans ces conditions, les fréquences élevées subissent une certaine atténuation et la reproduction sonore est plus ou moins sourde.

En tournant au contraire P2 de façon que sa résistance soit maximum, l’action de C21 est pratiquement annulé ; et le circuit se comporte comme si C21 n’existait pas. La fréquence de coupure supérieure reprend sa valeur maximum, définie par les caractéristiques des transistors utilisés. Dans ces conditions, les fréquences élevées ne sont pas atténuées et la reproduction se fait dans toute la gamme des fréquences acoustiques.

Il est évident d’autre part, qu’en tournant l’axe du potentiomètre sur des positions intermédiaires, l’action de C21 sera plus ou moins limitée et qu’ainsi la fréquence de coupure supérieure pourra être réglée à volonté entre les valeurs maximum et minimum indiquées ci-dessus. Les fréquences élevées seront atténuées d’une manière plus ou moins prononcée.

Le contrôle de tonalité, au lieu d’être continu peut aussi être réalisé sous une forme "par bonds". On peut même le réaliser sous la forme extrême à deux possibilités seulement : atténuation maximum ou nulle. Dans ce cas, le potentiomètre P2 est remplacé par un interrupteur qui met en service ou hors service, C21 en le reliant ou non au collecteur de TR4.

D’autres circuits plus complexes peuvent aussi être réalisés pour contrôler l’atténuation ou l’expansion des fréquences basses. Etant donné, qu’ils ne sont pas en général utilisés dans les récepteurs radio, mais seulement dans des chaines à haute fidélité (Hi-Fi), nous ne les traiterons pas dans cette leçon.

1 – 1 CONTRE-RÉACTION OU RÉACTION NÉGATIVE

Nous allons considérer un amplificateur, qui a un certain gain en courant (par exemple Gi = 100) et qui alimente une certaine charge Rc (par exemple un haut-parleur).

A l’aide d’un générateur, relié aux bornes d’entrée de l’amplificateur (figure 2a), nous allons injecter un signal de commande, constitué par le courant ie.

En agissant sur le potentiomètre P, nous pouvons régler la valeur du courant de commande qui attaque l’amplificateur au travers de la résistance R de forte valeur (cette valeur élevée est nécessaire précisément pour obtenir une commande en courant comme nous l’avons vu précédemment).

Réglons donc le potentiomètre pour avoir un courant de 1mA. Le courant de sortie sera alors cent fois plus grand c’est-à-dire qu’il sera de 100mA.

Supposons que nous pouvons prélever maintenant une certaine partie du signal de sortie et que nous le reportions à l’entrée de l’amplificateur. Ceci est possible en plaçant entre la sortie et l’entrée une résistance Rr comme indiqué en figure 2b. En choisissant convenablement la valeur de Rr, nous pouvons obtenir un courant ir ramené à l’entrée qui est égal à une certaine fraction du courant de sortie iu.

Si par exemple, nous faisons en sorte que ir soit égal au centième de iu, nous aurons ir égal à 1mA. Nous dirons alors que le coefficient de réaction b est égal à 1/100, c’est-à-dire que b = 1/100. Nous avons donc :

ir = b x iu = 1/100 x 100 = 1mA

Supposons maintenant que le courant ir, que nous appellerons courant de réaction, soit en opposition de phase avec le courant de commande ie délivré par le générateur.

De cette manière, le courant d’entrée de l’amplificateur, résultant de ie et de ir, sera donné par la différence entre les deux courants ci-dessus et la réaction est appelée Réaction négative ou Contre-réaction.

Si nous voulons, comme dans le cas de la figure 2b, que le courant de sortie soit encore de 100mA, il faudra faire en sorte que le courant effectif de commande de l’amplificateur (c’est-à-dire la différence entre ie et ir) soit encore de 1mA. Or comme ir = 1mA il est absolument nécessaire que ie soit égal à 2mA. Le courant effectif de commande sera alors :

ie – ir = 2mA – 1mA = 1mA

Nous voyons maintenant, que le gain effectif en courant de l’amplificateur (défini comme étant le rapport iu/ie) est dans le cas de la figure 2b (avec contre-réaction) réduit par rapport au cas de la figure 2a (sans contre-réaction). Nous avons en effet maintenant :

G'i = iu/ie = 100/2 = 50

au lieu de Gi = 100 comme auparavant.

Le gain G'i avec contre-réaction est donc d’autant plus petit par rapport au gain Gi sans contre réaction que le coefficient de contre-réaction est plus grand.

On démontre que le gain G'i est donné par la formule :

G'i = Gi/D

où D, appelé Degré de contre-réaction, est donné à son tour par la formule :

D = 1 + (b x Gi)

Dans le cas de notre exemple, nous aurons :

D = 1 + (1/(100 ) x 100) = 1+ 1 = 2

Le degré de contre-réaction est donc égal à 2 et le gain G'i est :

G'i = Gi/D = 100/2 = 50

Le degré de contre-réaction exprime donc de combien de fois le gain d’un amplificateur contre-réactionné est plus petit que le gain qu’aurait l’amplificateur en l’absence de la contre-réaction.

Jusqu’à maintenant nous avons vu qu’en appliquant une contre-réaction à un amplificateur, le gain de celui-ci diminuait, et ce d’autant plus que le degré de contre-réaction était plus élevé. Nous n’avons pas encore vu quels en étaient le ou les avantages. Il semblerait en effet à première vue, que la contre-réaction soit un non-sens, puisqu’elle réduit le gain d’un amplificateur.

L’utilisation de la contre-réaction est cependant plus que justifiée en pratique par les énormes avantages qu’elle présente.

On démontre en effet, qu’en appliquant à un amplificateur un degré de contre-réaction D, les distorsions du signal de sortie sont réduites de D fois par rapport à celles qui existent en l’absence de la contre-réaction.

On démontre encore que la fréquence de coupure supérieure d’un amplificateur contre-réactionné est d’environ D fois plus élevée que celle du même amplificateur sans contre-réaction. De même, la fréquence de coupure inférieure est D fois plus petite. Ceci signifie donc qu’en appliqaunt une contre-réaction à un amplificateur, on améliore notablement sa courbe de réponse aux fréquences basses et élevées.

Soit un amplificateur qui délivre un signal de sortie avec 10% de distorsion et dont la courbe de réponse s’étend de 100Hz à 5kHz. Appliquons à cet amplificateur, un degré de contre-réaction égal à 2 ; la distorsion va être réduite à 5% ; les fréquences de coupure vont être maintenant aux environs de 50Hz et 10kHz respectivement.

D’autre part, l’utilisation de la contre-réaction présente encore un autre avantage qui est celui d’obtenir un amplificateur moins sensible aux variations des caractéristiques, comme par exemple dans le cas du remplacement d’un transistor par un autre du même type. Ceci permet une production en série plus homogène et uniforme, sans avoir à recourir à une sélection des transistors.

On applique en général la contre-réaction sur un ou deux étages d’un amplificateur au maximum.

Si on veut appliquer la contre-réaction à plus de deux étages, on peut le faire bien sûr, mais il faut prendre de grandes précautions pour éviter des accrochages qui peuvent se produire aux fréquences élevées ou au contraire pour des basses fréquences.

Ce n’est que dans un amplificateur à un seul étage que l’on peut appliquer un fort degré de contre-réaction sans risque d’accrochage. C’est pour cette raison que l’on préfère en général contre-réactionner séparément les étages d’un amplificateur, au lieu d’appliquer une seule contre-réaction à tout l’amplificateur.

Dans les récepteurs radio, on applique très souvent la contre-réaction aux étages de basse fréquence. Pour cela, on insère une résistance entre le secondaire du transformateur de sortie et la base du transistor driver (R23 figure 1). Le degré de contre-réaction que l’on utilise en général est de l’ordre de quelques unités (5 à 10 au maximum) pour éviter une réduction trop importante du gain.


BATTERIES D'ALIMENTATION

Les circuits étudiés jusqu’à maintenant, et en général tous les appareils à transistors, peuvent être alimentés indifféremment soit par des batteries basse tension, soit par des redresseurs de courant alternatif ; mais l’utilisation des batteries est plus généralisée parce que les appareils à transistors d’emploi courant sont presque tous du type portable et les puissances absorbées pour leur alimentation sont faibles.

On peut toutefois faire remarquer que l’energie délivrée apr une batterie est beaucoup plus onéreuse que celle du réseau électrique. Ainsi par exemple, l’énergie d’une batterie de 4,5Volts que l’on utilise dans les montages expérimentaux "coûte" environ cinq cent fois celle du réseau électrique.

D’autre part, le coût est encore plus élevé pour les piles ordinaires des récepteurs portables du commerce. Il semblerait pour cette raison qu’il soit ridicule d’utiliser une batterie pour alimenter un appareil là où il y a une prise de courant alternatif et qu’il serait plus économique d’employer une alimentation redressée.

En réalité cependant, si l’on fait le calcul du taux d’amortissement d’une alimentation à redresseur, on trouve un délai d’environ trois ans, en utilisant le récepteur en moyenne deux heures par jour. Si on alimente par contre à l’aide d’une batterie un récepteur à sept transistors, on trouve une dépense de l’ordre de grandeur de celle qui est nécessaire pour alimenter en courant alternatif un récepteur classique à quatre tubes plus une valve : le prix d’une alimentation redressée ne se justifie donc pas.

C’est pour cette raison que l’emploi des piles et des batteries est largement diffusé dans les récepteurs transistorisés. C’est pour cela que je terminerai l’étude des circuits à transistors en passant en revue les principaux types de batterie.

Elles peuvent être subdivisées dans les groupes suivants :

Ces éléments sont reliés en série lorsque l’on a besoin d’une tension supérieure à celle formée par un seul élément. Ils peuvent être reliés aussi en parallèle si on a besoin de tension et de courant plus important.

Pour terminer l’étude des circuits, nous examinerons brièvement le principe de fonctionnement et la constitution des éléments des principales batteries utilisées dans les appareils à transistors selon la subdivision indiquée ci-dessus.

2 – 1 BATTERIES ÉLECTROCHIMIQUES PRIMAIRES (PILES AU CARBONE-ZINC ET AU MERCURE)

Les batteries de ce groupe se distinguent entr’elles selon la substance chimique qui les compose et suivant les réactions chimiques qui se produisent pendant leur fonctionnement, mais toutes dérivent de la pile Volta dont je vais rappeler le fonctionnement.

Si l’on immerge deux électrodes, une de zinc et l’autre de cuivre (ou de carbone), dans une solution acide (ou saline), on obtient entre ces électrodes une différence de potentiel capable d’alimenter en courant continu un circuit électrique extérieur. En d’autres termes, on peut dire que l’on a réalisé un dispositif qui fonctionne comme un "générateur de courant continu" et que ce dernier est parfaitement autonome en ce sens que l’énergie électrique est extraite des proprités chimiques des différents matériaux utilisés dans la réalisation de cette pile.

L’inconvénient principal de cette pile réside dans sa brève durée, car le courant ne se maintient pas constant, mais diminue graduellement jusqu’à s’annuler complètement et ceci très rapidement. On dit alors que la pile s’est polarisée.

Cette polarisation persite tant que l’on a pas éliminé l’hydrogène qui s’est formé sur l’électrode de cuivre (ou de carbone) pendant le fonctionnement. Cette polarisation a provoqué un accroissement considérable de la résistance inrerne de la pile et la diminution crrespondante du courant délivré.

Dans ce type de pile, pour éliminer l’hydrogène, on utilise des subtances chimiques dépolarisantes, c’est-à-dire qui sont avides du gaz qui se forme pendant le processus de polarisation. De cette façon, si on ne peut empêcher la production de l’hydrogène, on élimine cependant au fur et à mesure qu’il se forme dans la réaction chimique normale ; on assure ainsi à la pile une durée de vie beaucoup plus longue.

Les dépolarisants chimiques peuvent être liquides, solides, gazeux. Il est évident que dans les piles employées dans les appareils portables, on utilisera des dépolarisants solides ou gazeux. On peut aussi immobiliser, à l’aide de composés spéciaux, la solution acide ou saline (que l’on appelle électrolyte) interposée entre les deux électrodes, de façon à ce qu’il n’y ait pas de liquides libres susceptibles de se déplacer. On peut à ce moment utiliser la batterie sans précautions spéciales.

Les piles formées par des éléments à dépolarisant solide ou gazeux et par un électrolyte immobilisé, sont appelées dans le langage courant, des piles sèches.

La figure 3 représente un élément d’une pile sèche du type LECLANCHE, très uilisée dans les appareils portables.

L’électrode positive est constituée par un bâtonnet de carbone tandis que l’électrode négative est constituée par l’enveloppe même qui est en zinc. Comme électrolyte, on utilise une solution d’ammoniac et de chlorure de zinc immobilisée par un matériau absorbant.

On entoure l’électrode positive (carbone), par une enveloppe qui contient un mélange d’oxyde de manganèse, de graphite en poudre et de noir d’acétylène. Ce mélange fonctionne comme dépolarisant.

En général, un tel type d’élément délivre une tension de 1,5V.

Pour obtenir des tensions plus élevées, il faut relier un certain nombre d’éléments en série. Pour avoir une tension de 3V, il faut réaliser une batterie de deux éléments en série, pour 4,5V, une batterie de 3 éléments, pour 6V , 4 … et ainsi de suite.

Semblables aux précédentes du point de vue de fonctionnement, sont les batteries à éléments superposés, appelés encore WAFER ou à Eléments Pastilles représentées en figure 4.

Chaque élément d’une telle batterie (figure 4a) est constitué par une plaque de zinc de forme carrée ou rectangulaire qui constitue l’électrode négative, un papier imprégné de l’électrolyte et appliqué sur la face supérieure du zinc, et un aggloméré de carbone et de dépolarisant qui constitue l’électrode positive.

La face inférieure du zinc est recouverte par une couche de vernis noir conducteur qui a pour rôle d’empêcher les réactions chimiques entre le zinc et les pastilles successives de la batterie.

Chaque pastille est recouverte sur les côtés par du plastique isolant qui sert à empêcher l’electrolyte de s’évaporer.

Un tel élément délivre une tension constante de 1,5V ; on superpose donc un certain nombre d’éléments comme indiqué en figure 4b, et en reliant en série les différents éléments, on peut obtenir toutes les tensions requises pour alimenter les appareils à transistors.

La figure 5 représente un autre type de batterie sèche qui est la pile au mercure ; cette pile est constituée essentiellement par du zinc, de l’oxyde de mercure et de l’hydrate de potassium (soude caustique).

Les réactions chimiques ont lieu sur le zinc qui s’oxyde au contact de l’hydrate et sur l’oxyde de mercure qui est réduit en donnant du mercure métallique.

L’électrode de zinc (négatif) peut être préparée de différentes façons ; elle peut être constituée par des poudres fortement pressées en forme de cylindre creux (comme sur la figure 5), ou en disques ou sous forme de rubans de zinc très pur enroulés de façon à augmenter au maximum la surface de réaction.

L’oxyde de mercure dans le type de batterie de la figure 5, est disposé sur la couche la plus externe en contact avec l’enveloppe ; il est en général mélangés avec une fine poudre de graphite qui a pour rôle d’augmenter la conductibilité de l’électrode (positive).

L’electrolyte, l’hydrate de potassium, est immobilisé dans un matériau poreux et absorbant qui sépare l’électrode négative de l’électrode positive.

Le tout est enfermé dans une enveloppe en acier nickelé. La tension délivrée par les éléments au mercure est légérement inférieure à celle des éléments au carbone-zinc ; elle est de l’ordre de 1,3 V environ. On peut aussi réaliser avec ces éléments des batteries pour alimenter tous les appareils classiques à transistors.

2 – 2 BATTERIES ÉLECTROCHIMIQUES SECONDAIRES – (ACCUMULATEURS HERMÉTIQUES AU NICKEL CADMIUM)

Les batteries secondaires diffèrent des primaires en ce sens qu’après avoir cédé leur énergie électrique (décharge), elles peuvent à nouveau être rechargées si on les relie à un générateur approprié de courant continu.

Dans les batteries électrochimiques primaires, l’énergie électrique est obtenue à partir d’une énergie chimique par un processus irréversible : les opérations de transformation se font en sens unique.

Dans les batteries secondaires, des transformations analogues aux précédentes ont lieu, mais par contre il est possible de les inverser c’est-à-dire de reconstituer la substance chimique dans les mêmes proportions qu’au début de la décharge.

Il est à remarquer que les batteries de ce groupe, mieux connues sous le nom d’accumulateurs, sont beaucoup plus lourdes et plus encombrantes que les piles sèches. D’autre part, elles nécessitent des opérations de manutention, comme par exemple la vérification du niveau et l’addition périodique d’eau distillée ainsi que des précautions de manutention qui constituent un obstacle à leur utilisation dans les appareils du type portable.

La solution de ces problèmes ne pouvait être trouvée que dans la réalisation d’un accumulateur léger et absolument hermétique de façon à ce qu’il puisse être utilisé dans une position quelconque sans risque d’écoulement de l’électrolyte et sans obligation de retoucher périodiquement le niveau de ce dernier.

L’herméticité des accumulateurs classiques est pratiquement impossible à cause de l’apparition des gaz (oxygène et hydrogène) surtout vers la fin de la charge. Il faut donc chercher à supprimer la formation des gaz ou bien d’obtenir leur recombinaison de façon qu’il ne soit plus nécessaire de laisser ouvert les bacs.

La solution du problème a été trouvée par un nouveau procédé qui supprime complètement la libération de l’hydrgène et qui réalise la recombinaison de l’oxygène libéré avec les masses actives des électrodes ; par ce système, on évite la formation d’une pression excessive à l’intérieur de l’accumulateur et on peut fermer hermétiquement l’enveloppe.

Les électrodes sont du type nickel-cadmium, déjà employés dans d’autres types d’accumulateurs. La masse active de l’électrode positive est constituée par de l’hydroxyde de nickel, tandis que celle de l’électrode négative est formée par du cadmium et du fer finement broyés et mélangés. L’electrolyte est contituée par une solution de potasse caustique très pure.

La figure 6 illustre trois types d’accumulateurs hermétiques. Le type de la figure 6a se présente sous la forme d’une capsule métallique et qui par simple superposition permet de réaliser des batteries de tension quelconque ; ces éléments, de capacité relativement faible, peuvent remplacer les piles sèches à éléments plats utilisés surtout dans de petits appareils de prothèse auditive.

Le type de la figure 6b se présente sous la forme cylindrique et est contitué par des éléments de capacité un peu plus grande que celle du type précédent ; ce type peut remplacer les piles cylindriques classiques utilisées dans les récepteurs radio.

Le type de la figure 6c en forme de prisme à section carrée ou rectangulaire possède une capacité encore plus grande que celle des types précédents ; il peut donc servir à alimenter des appareils portables qui absorbent déjà une certaine puissance, beaucoup plus importante que celle qui est consommée dans les récepteurs à transistors classiques.

On peut voir en figure 6, par des coupes appropriées, les détails de construction des différents types ; le principe de fonctionnement ne diffère pas d’un type à l’autre. Tous délivrent en régime de décharge, une tension de 1,22V, et sont rechargés sous une tension comprise entre 1,35 à 1,50V.

2 – 3 BATTERIES SPÉCIALES – (PILES SOLAIRES ET RADIO-ACTIVES)

Pour conclure cette brève étude sur les batteries, nous allons examiner la constitution des piles solaires et des piles radio-actives (figure 7), qui actuellement ont trouvé des applications dans les appareillages transistorisés des missiles, des satellites artificiels et des navires cosmiques.

Le principe de fonctionnement de ces deux types de batterie est semblable ; on les appelle d’ailleurs quelquefois des "Radio-batteries".

Une radio-batterie est constituée essentiellement d’une jonction P-N de silicium ou d’un autre semi-conducteur, ou bien d’un système de jonctions P-N reliées en série entr’elles, ou en parallèle, ou en série-parallèle.

Si la jonction P-N est exposée à la lumière, ou en général à des radiations (comme par exemple celles qui sont émises par une substance radio-active), il apparait à ses bornes une différence de potentiel qui peut être utilisée comme force électromotrice.

En se basant sur ce principe, il a été possible de trouver la solution à un problème posé depuis tous les temps, c’est-à-dire d’utiliser en partie l’énorme réserve d’énergie constituée par la lumière solaire (il suffit en effet de penser que l’énergie solaire rayonnée sur la terre a une puissance moyenne de quelques 1000 W par mètre carré).

Il a été d’autre part possible de réaliser sur le même principe des piles de durée très grande, en utilisant des matériaux radio-actifs produits artificiellement par des procédés de physique atomique.

On a réalisé récemment aux Etats-Unis une petite batterie radio-active dont la durée, calculée théoriquement, devrait être de l’ordre de trente ans.

On peut prévoir facilement qu’avec les progrès techniques actuels, on pourra réaliser bientôt des batteries solaires et radio-actives utilisables dans les appareils d’usage courant. Pour le moment cependant, de telles batteries sont encore trop coûteuses et ne peuvent être utilisées couramment.


EXERCICES DE RÉVISION SUR LA 28ème LEÇON THÉORIQUE

1 – Que provoque la contre-réaction sur le gain de l’amplificateur ?

2 – Comment appelle-t-on encore la contre-réaction ?

3 – Quels sont les avantages de la contre-réaction ?

4 – Qu’indique le degré de contre-réaction ?

5 – Si le gain d’un amplificateur en l’absence de contre réaction est de 1000 et si le degré de contre-réaction est 10, quelle est la valeur du coefficient de réaction ?

6 – Un amplificateur en l’absence de contre-réaction, a un gain de 80, une bande passante s’étendant de 50Hz à 10.000Hz et une distorsion de 5%. On lui applique un degré de contre-réaction de 5. Quelles sont les nouvelles valeurs du gain, de la distorsion et de la bande passante ?

7 – Quels sont les éléments essentiels d’une pile sèche ?

8 – Par quoi les accumulateurs se distinguent-ils des batteries dites primaires ?

9 – Comment est constituée une batterie solaire ?


RÉPONSES AUX EXERCICES DE RÉVISION SUR LA 27ème LEÇON THÉORIQUE

1 – L’amplificateur à fréquence intermédiaire (FI) est du type sélectif et accordé sur la fréquence de la FI (par exemple 480kHz).

2 – Le détecteur délivre un signal constitué d’une composante continue proportionnelle à l’intensité du signal reçu et d’une composante alternative dont l’allure suit celle de l’enveloppe de modulation ; cette dernière composante constitue le véritable signal BF utile.

3 – La constante de temps d’un circuit RC est donnée par le produit de la valeur de R, par la valeur de C.

4 – La constante de temps exprime le temps qui s’écoule pour que la tension aux bornes de C se réduise de 2,72 fois, quand C se décharge dans R

5 – R = 1 MΩ = 106 Ω

C = 250 pF = 250.10-12

d’où RC = 106 x 250.10-12 = 250.10-6 seconde = 250µS.

6 – Le RAS sert à régler de façon automatique la sensibilité du récepteur en fonction de l’intensité du signal reçu.

7 – En l’absence de modulation le condensateur C du circuit de détection se charge à la valeur crête de la porteuse FI.

8 – Dans un récepteur à transistors, la tension RAS doit être positive par rapport à la masse de façon à réduire le gain du transistor HF en présence d’un signal intense.

9 – Au bout d’un temps égal à la constante de temps, la tension aux bornes du condensateur s’est réduite à 36,7% de sa valeur primitive de départ.

Fin de la leçon 28


LECON 29

CIRCUITS D’ALIMENTATION

Après l’étude des circuits à transistors, il convient d’examiner aussi les circuits que l’on peut réaliser avec des diodes cristal en vue de certaines applications en technique radio.

Je vous ai dit dans la sixième leçon théorique que la diode cristal pouvait être utilisée en Redresseur en la faisant travailler dans sa caractéristique directe et dans la partie horizontale de sa caractéristique inverse ; elle pouvait aussi être utilisée en Stabilisatrice de tension si on la faisait travailler dans la partie verticale de sa caractéristique inverse, c’est-à-dire à la tension Zener. Elle pouvait aussi être considérée comme un condensateur variable, si elle travaillait dans la région horizontale de sa caractéristique inverse.

Mais ce ne sont pas les seules applications possibles. On peut encore utiliser la diode comme une Résistance variable en la faisant travailler dans la région coudée de la caractéristique directe où la résistance varie avec le point de fonctionnement. Si on exploite sa propriété appelée "Effet Tunnel", on peut l’utiliser comme mélangeuse, oscillatrice ou comme élément de commutation dans les circuits à deux positions stables. Elle peut enfin être utilisée comme une diode photorésistante dans un circuit de commande si on exploite sa sensibilité à la lumière.

Entre toutes ces applications possibles, les deux plus importantes en pratique radio-électrique sont les deux premières, c’est-à-dire comme redresseuse et stabilisatrice.

Les redresseurs à cristal de silicium ou de germanium sont devenus de nos jours d’un emploi courant, étant donnés leur sécurité dans le fonctionnement, leur rendement élevé et leur encombrement réduit.

Toutefois ils présentent des limitations et en particulier ils sont très sensibles aux surcharges ; il convient donc d’examiner soigneusement leur fonctionnement, afin de savoir comment les utiliser avec toute la sécurité nécessaire.

Les diodes Zener sont devenues d’un emploi courant comme stabilisateur de tension et comme éléments aptes à délivrer des tensions de référence dans les alimentations stabilisées. Nous étudierons donc un régulateur de tension simple, dans lequel nous mettrons bien en évidence les caractéristiques électriques générales de la diode Zener et les limitations qui lui sont propres.

Avant de commencer l’étude des circuits redresseurs les plus simples il faut se rappeler que la tension alternative du secteur a une fréquence de 50 Hz, correspondant à une période de 20 mS (son allure sinusoïdale a été représentée en figure 1 de la théorique 15).

En général, cette tension est exprimée par sa valeur efficace ; la valeur de crête (ou valeur maximum ou valeur de "pic") et la valeur de crête-crête sont données par les formules suivantes :

vp = 1,41 Veff   et vpp = 2 vp

Si la tension du secteur est de 220 V (efficace), on aura :

vp = 1,41 x 220 = 310 V (environ)

vpp = 2 x 310 = 620 V (environ)

Si la tension alternative est 4,5 V (en utilisant par exemple un transformateur abaisseur) on aura :

vp = 1,41 x 4,5 = 6,3 V (environ)

vpp = 2 x 6,3 = 12,6 V (environ)

La valeur de crête d’une tension alternative que l’on peut redresser peut servir, par exemple, à déterminer la valeur maximum du courant direct de la diode dans ses conditions de fonctionnement normales, tandis que la valeur de crête-crête servira à déterminer la tension inverse maximum qui sera appliquée aux bornes de cette même diode.

Rappelons brièvement les définitions relatives aux tensions et aux courants dans une diode.

La tension qui apparait pendant le fonctionnement sur l’anode (figure 1, Théorique 6) peut être positive ou négative par rapport à la cathode. Quand la tension est positive, on dit que la polarisation est directe et que la diode travaille dans la région de sa caractéristique directe (figure 3, Théorique 6) : elle présente dans ce cas, une résistance minimum au passage du courant. Quand au contraire la tension de l’anode est négative par rapport à la cathode on dit que la diode est polarisée en inverse : elle travaille alors dans la région de sa caractéristique inverse et offre au passage du courant, une résistance maximum.

Pour se souvenir facilement de ces définitions, il suffit de remarquer que la tension directe est celle qui est positive et que la tension inverse est celle qui est négative, en prenant toujours comme référence le potentiel de la cathode.

Comme pour les tensions, on distingue le courant direct et le courant inverse ; le premier va de l’anode vers la cathode lorsqu’une tension directe est appliquée ; le second va en sens opposé du premier (cathode-anode) lorsqu’une tension inverse est appliquée.

Nous allons passer maintenant à l’étude des circuits.

1 - REDRESSEUR A UNE ALTERNANCE

Le circuit redresseur le plus simple que l’on puisse imaginer est constitué par une diode en série avec un condensateur ou une résistance (figure 1).

En pratique, il n’existe pas de charges purement résistives ou capacitives ; mais il convient d’examiner séparément ces deux cas, car ainsi nous pourrons bien mettre en évidence les limites de tension et de courant entre lesquelles la diode devra fonctionner.

1 – 1 REDRESSEUR A CHARGE CAPACITIVE

On considère le schéma de la figure 1a, où sont représentés une diode et un condensateur reliés en série par rapport au générateur délivrant la tension alternative VE.

Entre ces éléments on a placé une résistance Rt qui a pour rôle de limiter le courant de charge du condensateur au moment de la fermeture de l’interrupteur (ce courant au départ est très intense et peut détruire la structure de la diode).

Lorsque l’alternance positive de la tension VE arrive au point A, la diode se rouve polarisée dans le sens direct et le courant direct qui en résulte charge le condensateur à la tension continue VC. Cette tension s’accroît lorsqu’arrivent les alternances positives successives (étant donné que la charge du condensateur augmente) et au bout d’un certain temps elle atteint une valeur égale à la valeur crête de la tension d’entrée. Ainsi, si la tension d’entrée est de 220 V (volts efficaces), VC atteindra 220 V x 1,41 = 310 V (continus) environ. Cette dernière valeur correspond, comme nous l’avons vu tout à l’heure à la valeur de crête de la tension alternative.

Supposons que la tension à la sortie VC a atteint sa valeur de régime, c’est-à-dire qu’elle est continue et constante comme le montre le graphique de la figure 2.

Dans ces conditions, lorsque VE après avoir atteint la valeur de crête positive (point 1), commence à diminuer, la tension VDp appliquée à la diode (figure 1a) commence à croître parce que du côté de la cathode, le condensateur maintient le potentiel (qui est positif) tandis que sur l’anode le potentiel décroît : la tension appliquée à la diode se trouve être négative ; c’est donc une tension inverse (-VDp).

La tension inverse -VDp continue à croître pendant l’alternance négative et atteint sa valeur maximum (-VDpp) lorsque la tension d’entrée prend sa valeur de crête négative (point 2).

Sur le graphique de la figure 2, on peut voir immédiatement que –VDpp est égal à la valeur de crête à crête (VEpp) de la tension d’entrée VE. Ainsi, lorsque l’on connait la valeur efficace (ou la valeur de crête) de VE, on peut calculer facilement la valeur maximum de la tension inverse qui sera appliquée à la diode.

La tension inverse maximum qu’une diode peut supporter est toujours indiquée dans les données techniques des constructeurs.

Celle-ci correspond à un point de la caractéristique inverse qui est choisi avec une certaine marge de sécurité par rapport à la région où se produit le phénomène de ZENER (théorique 6) et où il y aurait un accroissement rapide du courant inverse et une destruction interne de la diode.

Lorsque l’on connait la valeur maximum admissible – VDpM, on peut calculer facilement la valeur efficace de la tension maximum d’entrée VEM par la formule :

VEM (valeur efficace) = -VDM/2,82

Ainsi pour la diode au silicium OA 211, la valeur maximum admississible est de 800 V et pour la diode au germanium OA 95 elle n’est que de 115 V. En appliquant la formule précédente, nous obtenons :

VEM  = 800/2,82 = 283 (volts efficaces) pour la diode au silicium

VEM  = 115/2,82 = 41 (volts efficaces) pour la diode au germanium

Si nous utilisons une diode OA 211, nous pourrons appliquer à l’entrée du redresseur sous charge capacitive, une tension secteur quelconque inférieure à 283 V , avec une diode OA 95, la tension d’entrée ne devra en aucun cas dépasser 41 V.

Il est intéressant de remarquer, que dans le circuit de la figure 1a, la diode se trouve toujours polarisée en inverse à partir de l’instant où la charge du condensateur est terminée ; à ce moment, le circuit n’est parcouru que par un très faible courant inverse, pratiquement négligeable. Ceci est dû au fait que le condensateur conserve sa charge et que la tension de sortie VC se maintient à une valeur que l’on peut considérer comme étant la valeur de crête de la tension positive d’entrée.

1 – 2 REDRESSEUR CHARGÉ PAR UNE RÉSISTANCE PURE

Nous considérons maintenant le schéma de la figure 1b, où la charge est constituée par la résistance R.

Dans le projet d’utilisation de la diode sous charge capacitive, le problème le plus important était la tension maximum inverse, -VDpM ; maintenant que la charge est une résistance pure, le problème est de connaître le courant maximum direct que peut supporter la diode en fonctionnement. En effet, tandis que dans le premier circuit on avait passage du courant direct seulement pendant la charge du condensateur, dans le second, on a passage du courant direct (Id) chaque fois qu’arrive sur l’anode une alternance positive de la tension d’entrée VE. En effet, tandis que la tension de sortie VC se maintient continue et variable (en ce sens qu’elle suit exactement l’allure du courant Id) dans le cas de la figure 1b.

Quand sur la borne A (figure 1b) arrive l’alternance positive de VE, la diode se trouve polarisée en sens direct ; le courant qui traverse le circuit est le courant direct Id. Ce courant parcourt la résistance R et détemine une chute de tension VR aux bornes de celle-ci.

Quand par contre sur la borne A arrive l’alternance négative, la diode se trouve en polarisation inverse ; toute la tension d’entrée s’établit aux bornes de la diode en provoqaunt un courant inverse très faible ; donc la chute de tension aux bornes de R est négligeable devant la tension de sortie VR.

Pour étudier le fonctionnement de ce circuit, il faut encore tenir compte de ce que l’intensité du courant direct dépend des valeurs de la tension d’entrée et de la résistance totale du circuit. Cette résistance totale est donnée par la résistance de charge et par la résistance dynamique de la diode.

Nous allons recourir, dans l’étude qui va suivre, à la méthode graphique (figure 3) qui permet de réunir en une seule représentation les lois qui régissent les grandeurs caractéristiques du circuit lorsque celui-ci fonctionne en polarisation directe de la diode. Nous étudierons après les conditions en polarisation inverse.

Le circuit de la figure 1b est représenté complètement dans le graphique de la figure 3, par les données suivantes :

La caractéristique directe a été dessinée selon les données du constructeur.

La tension d’entrée est représentée par l’alternance positive d’un signal sinusoïdal par rapport à l’axe des temps t (axe vertical) et à l’axe horizontal VDp (commun, lui, avec l’axe VDp de la caractéristique). Les droites de charge sont toutes parallèles puisqu’elles représentent la même résistance (R = 210Ω) et que par conséquent elles ont toutes la même pente.

Pour vérifier que ces droites de charge représentent effectivement la résistance de 210Ω, il suffit de prolonger l’une d’elle, par exemple celle qui passe par le point de fonctionnement L jusqu’à ce qu’elle coupe laxe Id au point D ; on peut lire ainsi la valeur de la tension au point A sur l’axe VDp et la valeur du courant au point D sur l’axe Id.

Dans le cas de l’exemple, la tension est égale à la valeur de crête, (VEp = 6,3 V) de la tension d’entrée et le courant est de 30mA environ.

Cette opération équivaut à supposer que la diode est en court-circuit et que toute la tension d’entrée (valeur de crête) est appliquée à la résistance R = 210Ω ; le courant qui est ainsi déterminé est celui qui passerait dans la résistance de charge si on appliquait à cette dernière, une tension de 6,3 V.

Connaissant les valeurs de la tension (6,3 V) et du courant (30mA = 0,03 A) on peut vérifier que la valeur de R est bien donnée par la formule de la loi d’ohm :

R = V/I = 6,3/0,03 = 210Ω

Vous pouvez vérifier facilement que la valeur correspondant aux autres droites de charge parallèles reste la même : en effet, toutes les droites parallèles à la droite AD déterminent des segments proportionnels sur les axes ce qui fait que le rapport tension/courant (V/I) reste le même (R = 210Ω).

On peut maintenant déterminer facilement sur la caractéristique directe les points de fonctionnement de la diode pour chaque valeur de la tension d’entrée VE.

Entre les différentes valeurs de VE, quelques-unes sont particulièrement importantes, comme celles par exemple qui correspondent aux points 0 et 6 (zéro volt), 1 et 5 (3,15 V), 2 et 4 (4,5 V = VEeff), 3 (6,3 V = VEp). Ces points sont ceux de l’alternance positive du signal d’entrée.

Aux points 0 et 6 correspond le point de fonctionnement 0 de la caractéristique ; pour ces points, la tension et le courant direct sont égaux à zéro.

Aux points 1 et 5 correspond le point de fonctionnement L’’, pour lequel la tension directe VDp est égale à 1 V environ et le courant direct Id à 10mA environ.

Aux points 2 et 4 correspond le point de fonctionnement L’ pour lequel la tension directe VDp est égale à 1,3 V environ et Id à 15mA.

Enfin au point 3 correspond le point de fonctionnement L qui est le maximum en ce sens qu’il correspond à la tension de crête de la tension d’entrée. Pour ce point, on obtient la valeur maximum de la tension directe (VDpp = 1,6 V) et la valeur maximum du courant direct (IDp = 22,5mA).

Nous pouvons représenter la tension directe sur le même graphique que celui représentant la tension d’entrée ; les points correspondant sont repérés 0, 1’, 2’, 4’, 5’ et 6. Cette courbe donne l’allure de la tension directe aux bornes de la diode.

Nous pouvons aussi représenter le courant direct Id en reportant les points 0’’, 1’’, 2’’, 3’’, 4’’, 5’’ et 6’’. Cette courbe donne l’allure du courant direct dans la diode.

Outre les points de fonctionnement L’’, L’ et L, il convient de considérer encore le point de fonctionnement Lo qui se trouve dans la région de courbure de la caractéristique.

En correspondance avec le point Lo, on lit la tension directe de la diode VDps, dite tension de Seuil qui est une donnée caractéristique de chaque type de diode, car elle indique la limite inférieure de la tension VDp où le rendement du redresseur est pratiquement égal à zéro. Connaissant VDps (pour les diodes au germanium, elle est au maximum égale à 0,5 V, tandis que pour les diodes au silicium elle est de l’ordre de 0,8 V), on peut déterminer Lo ; ensuite, à l’aide de la droite de charge qui passe par Lo, on trouve la valeur de VEs qui correspond au point d’intersection de cette droite de charge avec l’axe VDp. La valeur de VEs indique la valeur de la tension d’entrée qui détermine aux bornes de la diode une tension directe égale à la valeur du seuil.

La détermination de VEs est très importante dans le cas où l’on veut redresser une tension très basse (de quelques volts) comme dans l’exemple vu ci-dessus ; en effet, plus la tension appliquée à la diode est faible, plus son rendement sera bas (le rendement est le rapport entre la tension de sortie et la tension d’entrée du circuit).

En général, pour que le rendement du redresseur soit élevé, il faut que la valeur de crête de la tension sinusoïdale d’entrée soit à peu près dix fois la valeur de VEs. Dans le cas de l’exemple, VEs est de l’ordre de 0,6 V (environ) et la valeur de crête de la tension d’entrée est supérieure à 6 V (VEp = 6,3 V).

Encore plus importante que la tension de seuil, est la valeur maximum du courant direct admissible (IDM), pour une marge de sécurité suffisante pour la diode.

Les renseignements techniques sur la diode OA 95 donnent un courant IDM = 150mA, valeur déterminée pour une tension VE sinusoïdale ; ainsi, dans le cas de notre exemple, où le courant maximum est IDp = 22,5mA, la marge de sécurité est très grande.

Nous avons étudié jusquà maintenant le fonctionnement du circuit de la figure 1b pendant la polarisation directe de la diode ; pour conclure cette étude, encore faut-il voir ce qui se passe lorsque ce même circuit se trouve en polarisation inverse, c’est-à-dire lorsque sur son anode arrive l’alternance négative de la tension d’entrée.

Quand la diode est polarisée en inverse, la chute de tension aux bornes de R est pratiquement négligeable, car le courant inverse qui traverse la résistance est lui-même extrêmement faible ; ainsi presque toute la tension d’entrée se touve aux bornes de la diode et correspond à la tension inverse. Dans ces conditions, nous pourrons retenir que la tension inverse maximum est égale à la valeur de crête de VE (VEp = 6,3 V) comme il en résulte sur le graphique de la figure 4.

En nous rappelant ce qui advenait pour un circuit chargé par une capacité pure, nous voyons immédiatement que dans ce dernier cas, la tension inverse maximum est plus faible (en effet dans le circuit à charge capacitive, - VDpp était égale à la valeur de crête à crête de VE (figure 2). Nous en déduirons que dans le circuit actuel, nous pourrons appliquer une tension d’entrée maximum double de celle que l’on pouvait admettre lorsque la charge était purement capacitive. Nous pourrons ainsi appliquer une tension de 82 volts efficaces au lieu des 41 V calculés précédemment pour la diode OA 95 et 566 volts efficaces au lieu de 283 V pour la diode au silicium OA 211.

Si nous voulions ainsi augmenter la tension d’entrée de 4,5 V à 82 volts (pour la diode OA 95), nous devrions aussi augmenter la valeur de la résistance de charge jusqu’à 546Ω afin d’éviter que le courant direct (Id) ne dépasse la valeur maximum admissible.

Je vous ai représenté aussi dans le graphique de la figure 4 l’allure de la tension de sortie VR ; il suffit de remarquer que son allure est la même que celle du courant Id, puisqu’elle est constituée par la chute de tension dûe au passage de Id dans la résistance R (VR = R x Id). Ainsi, sa valeur est proportionnelle à tout moment à l’intensité du courant et les deux formes d’ondes sont donc parfaitement identiques.

1 – 3 REDRESSEUR CHARGÉ PAR RÉSISTANCE ET CAPACITÉ

Le circuit de la figure 1a peut être modifié comme indiqué à la figure 5a où une résistance R a été placée en parallèle sur le condensateur C. Le transformateur qui délivre la tension d’entrée VE a été représenté aussi.

La résistance R peut-être remplacée par l’appareil que l’on désire alimenter par le courant redressé (Io).

Si R est infiniment grand, le courant Io est pratiquement négligeable : on retrouve alors les conditions de fonctionnement décrites dans le circuit à charge purement capacitive. Dans ce cas, la tension de sortie Vo est continue et constamment égale à la valeur de crête de la tension d’entrée VE. Ces conditions peuvent être vérifiées chaque fois que la charge n’absorbe pas de courant et que le redresseur fonctionne à vide. Dans ce cas, il faut tenir compte dans le projet de la tension inverse maximum (-VDpM) admissible par la diode.

Lorsque la charge absorbe un certain courant, la tension à la sortie ne reste plus parfaitement constante, mais présente une ondulation Vr (figure 5b) appelée Tension de ronflement ; d’autre part, la valeur de Vo est inférieure à la valeur de crête de la tension à l’entrée à cause de la chute de tension aux bornes de la diode et de la résistance Rt qui représente la résistance du transformateur.

On peut dire que ces nouvelles conditions de fonctionnement sont intermédiaires entre celles des circuits chargés par une capacité seule ou par une résistance seule. Toutes les limitations que nous avons vues au sujet des circuits de la figure 1 restent évidemment valables.

Pour expliquer l’allure particulière de la tension de sortie Vo et surtout la présence de la tension de ronflement Vr, il faut considérer le fonctionnement du condensateur après l’adjonction de la résistance R dont la valeur est notablement plus faible que celle de la résistance inverse de la diode.

Nous allons suppposer qu’au départ la tension de sortie Vo est continue et égale à la valeur de crête VEp de la tension d’entrée, c’est-à-dire que le redresseur fonctionne à vide.

Lorsque l’on branche la résistance R, le condensateur commence à se décharger dans R et la tension diminue à une vitesse qui est fonction de la valeur de la constante R x C (où la résistance est exprimée en ohms et la capacité en farads) jusqu’à ce qu’elle devienne égale à nouveau à la valeur de la tension alternative VE. On suppose que cette égalisation a lieu à l’instant to. Comme les tensions d’entrée et de sortie sont égales, la tension appliquée aux bornes de la diode est nulle et le courant Id est nul lui aussi. Mais à partir de to, la tension VE augmente en suivant une allure sinusoïdale ; la diode se trouve alors polarisée dans le sens direct et un courant Id traverse le circuit. Le courant se partage en IC qui recharge le condensateur et Io qui alimente la charge résistive et fait ainsi croître la tension de sortie Vo. Quand, après avoir atteint la valeur de crête, la tension VE va commencer à décroître, le courant Id va diminuer aussi, et va finir par s’annuler en même temps que va s’annuler la différence existant entre les tensions d’entrée et de sortie.

A partir de cet instant et pendant toute la durée du cycle, la diode va se trouver polarisée en inverse et il n’y aura plus passage de courant de l’entrée vers la sortie (Id = 0).

Cependant le courant Io qui alimente la charge résistante ne va pas s’annuler et la tension Vo non plus, car intervient alors la décharge du condensateur. Celui-ci en effet ne peut se décharger dans la résistance inverse de la diode (qui est très élevée) ; il ne peut donc se décharger que dans la résistance de charge R.

La tension à la sortie continue à diminuer et atteint une valeur d’autant plus basse que la constante de temps (égale au produit R x C) est plus faible. A un certain moment arrive une nouvelle alternance positive de VE ; la tension inverse de la diode s’annule et commence un nouvel intervalle de temps où il y a à nouveau passage du courant direct. La tension à la sortie recommence à augmenter suivant l’allure déjà vue.

Si l’on observe le graphique de la figure 5b, on remarque que pour chaque cycle de la tension d’entrée VE, c’est-à-dire pendant les 20 mS qui séparent to et t’o, on a un cycle complet de la tension de ronflement Vr ; on en déduit que VE et Vr ont même fréquence (f = 50 Hz).

Si l’on veut obtenir à la sortie une tension à faible ondulation (comme celle qui est nécessaire pour alimenter un amplificateur basse fréquence ou un récepteur radio), il faut que la constante de temps de la charge (R x C) soit inférieure ou au plus égale au rapport 10/f, où f est la fréquence de la tension alternative VE.

Pour un réseau à 50 Hz, la valeur de la constante de temps nécessaire doit être de :

10/50 = 0,2 s (= 200.000 µS).

Si la résistance de charge est de 500Ω, la capacité du condensateur doit-être :

C = 0,2/R = 0,2/500 = 0,0004 F (= 400 µF).

En connaissant C, R et la fréquence de VE (qui en général est 50 Hz), on peut déterminer le pourcentage de la valeur efficace de la tension de ronflement Vr par rapport à la valeur moyenne Vo (figure 5b) de la tension de sortie, en prenant la formule suivante :

X = 6,28 x f x C x R

où f est en hertz, C en farad, R en ohm.

et en utilisant le graphique pour redressement à une alternance représenté en figure 6.

Pour une fréquence de 50 Hz, une capacité de 0,0004 F (=400 µF) et une résistance de 500Ω, on obtient :

X = 6,28 x 50 x 0,0004 x 500 = 6,28 x 0,02 x 500 = 6,28 x 10 = 62,8

En reportant cette valeur sur l’axe horizontal du graphique, on déterminera la valeur de la tension de ronflement, en pourcent par rapport à la tension continue de sortie. Dans l’exemple, la tension de ronflement est égal à 2% (environ) de la tension Vo qui alimente la charge.

Si l’on augmente la capacité du condensateur, on peut diminuer la valeur de la tension de ronflement.Ainsi, si l’on prend un condensateur de 800 µF, à la place de 400 µF, la valeur de X est doublée (125,6 au lieu de 62,8) et on trouve que la tension de ronflement n’est plus que de 1% environ.

Inversement, si la résistance de charge diminue, c’est-à-dire que le courant délivré par le redtresseur augmente, la valeur de la tension de ronflement augmente. Ainsi, si le courant délivré est doublé (lorsque la résistance de charge est deux fois plus faible) la valeur de X est divisée par 2 (31,4 au lieu de 62,8) ; la tension de ronflement passe de 2% à 4% environ.

Une caractéristique importante de la diode est la valeur maximum IDM du courant direct. Dans le cas du redresseur à charge capacitive et résistive, la valeur de crête du courant redressé (pour une valeur égale de la tension moyenne), augmente notablement ; on doit donc réduire le courant moyen redressé de façon que le courant de crête dans la diode ne dépasse la valeur maximum admissible. Il peut aussi arriver que le courant continu maximum que l’on peut obtenir avec un circuit déterminé soit limité par la valeur IDM ou bien que la limitation provienne de la tension inverse maximum –VDpM.

Les deux limitations ne sont pas indépendantes ; de plus, il faut encore tenir compte de l’échauffement de la diode, produit par le passage du courant direct et inverse. Par effet de cet échauffement, les deux valeurs –VDpM et IDM subissent des réductions sensibles ; il faut donc en tenir compte aussi dans le calcul du courant continu maximum que l’on doit admettre dans la charge.

En pratique, pour utiliser correctement la diode dans un circuit redresseur il convient de considérer la caractéristique de charge qui représente l’allure de la tension continue (Vo) en fonction du courant continu délivré (Io).

La caractéristique de charge est donné par le constructeur pour un circuit d’utilisation type. Elle permet d’établir immédiatement la valeur maximum de la tension d’entrée que l’on peut appliquer au circuit, la valeur maximum du courant moyen redressé, la chute de tension qui se produit aux bornes de la diode et la résistance de protection Rt qu’il faut utiliser pour toute valeur du courant délivré. Ainsi, par un simple calcul basé sur la loi d’ohm, on peut déterminer rapidement la résistance de charge minimum admissible.

Je vous ai reporté en figure 7, le schéma d’un redresseur à une alternance et la caractéristique de charge qui s’y rapporte.

La diode utilisée est une OA 214 ; elle admet une tension inverse maximum (-VDpM) de 700 V et un courant redressé maximum (Io) de 500mA.

La valeur de Io peut être vérifiée immédiatement en lisant la valeur maximum reportée sur l’axe horizontal (500mA)

D’autre part, sur l’axe vertical, on peut lire la valeur de la tension maximum présente à la sortie (307 V) quand le redresseur fonctionne à vide.

En doublant cette valeur (2 x 307 = 614 V) on trouve que la valeur de la tension inverse maximum appliquée à la diode est nettement inférieure aux 700 V (= -VDpM) qu’indique le constructeur de la diode. Je signale que 307V correspond à peu de chose près à la valeur de crête d’une tension secteur de 200 Veff .

Il est intéressant de calculer maintenant la valeur de la résistance de charge qui correspond à un courant délivré Io.

Pour cela, il suffit d’appliquer la formule R = V/I (loi d’ohm).

Par exemple, si Io = 0,05 A (= 50mA) et Vo = 300 V, la résistance de charge sera :

R = 300/0,05 = 6000Ω

On déterminerait de la même manière que dans le circuit de la figure 7, la résistance de charge minimum que l’on peut admettre et qui correspondrait à un courant Io maximum, est égale à 520Ω environ.

Inversement, si l’on connait la valeur de la résistance de charge, on peut déterminer directement sur le graphique la valeur de la tension et du courant de sortie.

Pour tracer la droite de charge R, il suffit de déterminer un seul point et de joindre celui-ci à l’origine 0 du système d’axes.

Ainsi, si R = 1000Ω, on détermine le point A de la droite de charge qui représente R, en se fixant par exemple la tension V = 100 V et en calculant le courant qui y correspondrait.

I = V/R = 100/1000 = 0,1 A = 100mA

Ayant déterminé le point A (qui appartient obligatoirement à la droite de charge), il suffit de le joindre à l’origine 0 et de prolonger la droite jusqu’à son intersection B avec la caractéristique.

Les valeurs qui correspondent au point B indiquent respectivement la tension de sortie (Vo = 280 V) et le courant de sortie (Io = 280mA) qui alimentent la charge de 1000Ω.

En examinant la caractéristique d’un redresseur, il est important de remarquer comment varie l’allure de la tension de sortie lorsque le courant absorbé par la charge augmente.

En passant de 0 à 100mA, la chute de tension est de 14 V ; de 100mA à 200mA, la chute de tension est de 10 V ; de 200 à 300mA, elle est de 7 V ; de 300 à 400, puis de 400 à 500mA, elle reste à 7 V.

En comparant ces valeurs, on voit immédiatement que la chute de tension est plus importante dans le début de la caractéristique ; ceci est dû à la courbure de la caractéristique de la diode ; on a donc une résistance dynamique plus grande lorsque l’on travaille avec des tensions directes proches de la valeur du seuil. Plus loin, la chute de tension diminue et tend à se stabiliser à une valeur de 7 V pour chaque intervalle de 100mA.

La variation de la tension de sortie en fonction de la charge peut être indésirable si l’on désire alimenter un circuit à tension constante. On est souvent obligé de recourir à des systèmes particuliers de stabilisation qui réduisent ces variations à des limites fixées à l’avance.

Dans la prochaine et dernière leçon, nous étudierons les circuits redresseurs à double alternance, les doubleurs de tension et le circuit fondamental de stabilisation des tensions par utilisation des propriétés des diodes Zener.


EXERCICES DE RÉVISION SUR LA 29ème LEÇON THÉORIQUE

1 – Comment calcule-t-on la valeur maximum de la tension inverse appliquée à une diode redresseuse à charge purement capacitive (ou à capacité et résistance), lorsque l’on connait la valeur de crête de la tension à l’entrée ?

2 – Quelle est la valeur maximum de la tension inverse appliquée à une diode redresseuse à charge purement capacitive, lorsque la tension à l’entrée est donnée en volts efficaces ?

3 – Qu’appelle-t-on tension de seuil d’une diode ?

4 – Lorsque l’on connait la valeur maximum admissible (-VDpM) de la tension inverse d’une diode, comment peut-on calculer la valeur efficace de la tension maximum d’entrée VEM ?

5 – Lorsque l’on diminue la résistance de charge d’un redresseur, est-ce que la tension de ronflement diminue aussi ?

6 – On désire obtenir un taux de ronflement de 1% (redresseur à une seule alternance). Quelle est la capacité que l’on doit utiliser si la résistance de charge est 1000Ω (secteur à 50 Hz) ?

7 – Quelle est la tension de ronflement dans le circuit précédent, si la tension de sortie est 250 V ?

8 – En utilisant le graphique de la figure 7, déterminer le courant Io et la tension Vo pour une charge de 667Ω ?

9 – Est-ce que la tension de sortie d’un redresseur dépend du courant qui alimente la charge ?


RÉPONSES AUX EXERCICES DE RÉVISION SUR LA 28ème LEÇON THÉORIQUE

1 – La contre-réaction diminue le gain d’un amplificateur.

2 – La contre-réaction est encore appelée Réaction négative. La réaction positive, rappelons-le, est utilisée dans les oscillateurs.

3 – Les principaux avantages de la contre-réaction sont : réduction des distorsions introduites par l’amplificateur et extension de la bande de fréquence.

4 – Le degré de contre-réaction indique de combien de fois est réduit le gain de l’amplificateur contre-réactionné par rapport au gain qu’il présenterait en l’absence de contre-réaction

5 – Il suffit d’appliquer la formule :

D = 1 + (b x G)

où D = 10 et G = 1000

d’où D – 1 = b x G

et b = (D-1)/G = (10-1)/1000  = 9/1000

6 – Le degré de contre-réaction est D = 5

Le gain de l’amplificateur avec contre réaction est :

G’ = G/(D ) = 80/5 = 16

La distorsion est maintenant réduite à (5%)/5 = 1%

La bande passante s’étend de 10 Hz à 50.000 Hz

7 – La pile sèche est constituée en général par deux électrodes (une positive et une négative) par un électrolyte, par un matériau absorbant qui sert à immobiliser l’électrolyte, par un matériau dépolarisant et par un bac enveloppe.

8 – Les accumulateurs se distinguent des batteries primaires par les matériaux qui les composent, par les transformations chimiques qui s’y produisent et par le fait qu’ils peuvent être rechargés en les reliant à un générateur approprié de courant continu.

9 – Une batterie solaire est constituée par un certain nombre d’éléments reliés entr’eux en série, ou en parallèle, ou en série-parallèle ; chaque élément est formé par une simple jonction PN que l’on expose aux radiations solaires.

Fin de la leçon 29


LECON 30

REDRESSEURS DOUBLE ALTERNANCE
MULTIPLICATEURS DE TENSION

Je vous donne en figure 1, les schémas de principe des redresseurs les plus courants et qui dérivent du redresseur à une seule alternance, étudié dans la dernière leçon.

Il s’agit ici de circuits classiques, très largement utilisés dans les montages à tubes.

Le montage de la figure 1a est constitué par deux circuits identiques et semblables à celui de la figure 1a de la précédente leçon théorique. Ces deux circuits ont en commun la charge (représentée par le condensateur C) et la résistance de protection Rt.

Si l’on se rappelle que lorsque la tension VE est positive sur D1, elle est alors négative simultanément sur D2 (et inversement), on voit immédiatement que pendant une alternance c’est D1 qui travaille et D2 est bloquée, et que pendant l’alternance suivante, c’est D2 qui conduit et D1 est bloquée.

Nous dirons en d’autres termes, que l’onde entière est appliquée à la charge, la moitié au travers de D1 et l’autre moitié au travers de D2.

Il faut encore préciser qu’à chacune des diodes est appliquée non pas toute la tension VE, mais seulement VE/2 qui apparait entre la prise centrale et les extrémités du secondaire du transformateur. En conséquence, la tension de sortie VC qui en résulte est diminuée elle aussi par rapport à celle que l’on pourrait obtenir avec la même tension VE que l’on appliquerait à une seule diode. L’avantage de ce circuit réside en une réduction sensible de la tension de ronflement dans des mêmes conditions de charge, comme vous pouvez le constater en examinant les graphiques de la figure 6, Théorique 29. En effet, pour la même valeur de X, c’est-à-dire pour la même fréquence et la même constante de temps de la charge (par exemple pour R x C = 62,8) on trouve que le pourcentage de la tension de ronflement a été diminué de moitié et est passé de 2% à 1% environ.

Le circuit en pont de la figure 1b est analogue au précédent et accomplit les mêmes fonctions et donne les mêmes résultats en ce qui concerne la tension de ronflement. Le principal avantage de ce circuit, consiste dans la possibilité de le brancher directement sur le secteur et éliminer ainsi le transformateur d’alimentation, puisque l’on n’a plus besoin d’avoir un secondaire à prise médiane.

Quand le point A du circuit est positif et B négatif, l’alternance positive de VE traverse les diodes D1 et D’1 car elles se trouvent polarisées, en sens direct. Inversement quand le point A est négatif et B positif, l’alternance négative de VE traverse les diodes D2 et D’2.

La tension d’entrée VE, se répartit toujours aux bornes de deux diodes reliées en série : ainsi, la tension inverse maximum que l’on peut appliquer est égale à la somme des tensions inverses maxima que peut supporter chacune des diodes. Ceci constitue donc un avantage en ce sens que l’on peut utiliser des diodes moins chères et compenser ainsi en partie, la dépense supplémentaire occasionnée par D’1 et D’2. En pratique, les quatre diodes du redresseur en pont sont vendues déjà reliées et enfermées dans une enveloppe de protection (qui fait office aussi d’ailette de refroidissement).

De cette façon, on réalise une diminution du coût de fabrication.

Les figures 1c et 1d représentent les schémas de deux redresseurs-multiplicateurs de tension.

Les capacité C1 du circuit de la figure 1c est obtenue en reliant en série (sortie positve avec sortie négative) deux condensateurs électrochimiques ; on évite ainsi que les électrochimiques ne soient détruits par le passage du courant alternatif et on obtient en même temps, une capacité plus grande que celle de deux condensateurs au papier et qui serait insuffisante.

Supposons qu’initialement C1 soit déchargé et que la tension VE soit négative du côté Rt – C1. Dans ces conditions, la diode D1 est polarisée dans le sens direct et le condensateur C1 se charge à la valeur de crête Vc1. Pendant l’alternance positive, c’est la diode D2 qui se trouve être polarisée dans le sens direct, tandis que D1 est maintenant bloqué. La tension Vc1 s’ajoute à la tension VE, de façon que la valeur de crëte de la tension directe qui se trouve appliquée à D2 soit double de celle de la tension du secteur appliquée à D1 : de cette façon, le condensateur C2 se charge à la tension 2 Vc1.

Le circuit de la figure 1d est légèrement différent quoique le but à atteindre (doubler la tension de sortie Vc) reste le même.

Dans ce circuit, les deux diodes travaillent alternativement : D1 pendant l’alternance positive de VE et D2 pendant l’alternance négative. Le condensateur C1 se charge à la même valeur de crête Vc au travers de la diode D1 ; de même C2 se charge à la même valeur de crête Vc au travers de la diode D2 ; ainsi la tension à la sortie, qui est donnée par la mise en série des deux tensions Vc, est égale à 2 Vc.

Les doubleurs de tension du type de ceux que je viens de vous décrire sont surtout utilisés dans les alimentations des téléviseurs.

Ils sont surtout avantageux du fait qu’ils permettent d’éliminer un transformateur et de réduire aussi poids, encombrement et prix.

Je vous donne en figure 2 les principales caractéristiques moyennes sur les redresseurs d’utilisation courante.

En comparant les valeurs admissibles en densités de courant, on voit que la diode au silicium offre des possibilités plus grandes par rapport à n’importe quelle autre diode à semi-conducteur, tandis que celles à oxyde de cuivre ne peut être utilisée que pour alimenter des appareils qui n’absorbent que peu de courant (comme par exemple un contrôleur universel).

Comme vous pouvez le voir d’après ce tableau, la diode au silicium est supérieure ou tout au moins égale par rapport à toutes les autres diodes, en ce qui concerne la tension inverse admissible, le rendement maximum, la résistance dynamique minimum, l’encombrement minimum à puissance égale. Elle est supérieure aux autres diodes à semi-conducteur en ce qui concerne la température maximum admissible.

On peut donc prévoir facilement une diffusion de plus en plus grande de la diode au silicium en remplacement ses tubes redresseurs classiques et même des autres redresseurs, spécialement ceux au silicium et au germanium.

Les diodes à l’oxyde de cuivre continuent à être utilisées dans les appareils qui nécessitent une faible tension d’alimentation (et un faible courant), mais qui ont besoin d’une faible tension de seuil. Les diodes sont d’ailleurs bon marché.

2 – STABILISATION DE TENSION A DIODE ZENER (ET A TRANSISTORS)

Nous avons vu dans la 6ème leçon théorique que l’allure de la caractéristique inverse d’une diode à jonction se modifiait notablement quand la tension inverse qu’on lui appliquait, dépassait une certaine valeur (VZ), même de quelques dizièmes de volt ; il suffit d’un très léger accroissement de VZ pour déterminer une augmentation très sensible du courant inverse ; ainsi la caractéristique tension-courant prend une allure presque verticale, pendant que VZ reste presque horizontal.

La figure 3 représente l’allure typique de la caractéristique d’une diode au-delà du point de Zener.

Vous remarquerez, que la courbe comprise entre les points A et B n’est pas verticale, mais qu’elle est inclinée sur l’axe –VD (d’ailleurs plus que ne l’est en réalité la caractéristique d’une diode Zener) : ceci a été fait pour bien montrer l’intervalle entre VZmax et VZmin où doit fonctionner normalement la diode Zener.

La tension VZ indique le point où commence à se manifester le phénomène de Zener. Entre VZ et VZmin, la courbe présente un coude où l’on note le passage progressif d’une résistance inverse très grande (de l’ordre du mégohm) à une résistance très faible (de quelques ohms).

Les diodes redresseuses que nous avons vues précédemment ne peuvent en général fonctionner à la tension VZ qui représente la limite maximum absolue de la tension inverse. Elles ne peuvent non plus fonctionner à des tensions inverses supérieures, car le courant IZ qui traverserait alors la diode détruirait irrémédiablement la jonction. Les diodes Zener par contre, sont réalisées, pour fonctionner à des tensions supérieures à VZ, C’est-à-dire dans la région rectiligne de la caractéristique comprise entre les points A et B (figure 3). Pour des tensions inverses inférieures à VZ et pour les tensions directes, leur caractéristique est semblable à celle des redresseurs.

Les diodes Zener sont obtenues par un procédé d’alliage entre une plaquette de silicium N et un fil d’aluminium. On obtient ainsi une jonction PN ayant toutes les propriétés d’une jonction redresseuse, mais dans laquelle le phénomène de Zener apparait pour des tensions VZ relativement faibles (pour quelques volts à quelques dizaines de volts).

Comme semi-conducteur, on utilise du silicium, étant donné qu’avec ce dernier, on peut atteindre des températures relativement élevées (150°C) c’est-à-dire supérieures à celles que l’on peut obtenir dans les jonctions par effet du courant important de Zener.

Pendant le montage, la diode est enfermée d’une façon hermétique dans une enveloppe métallique de quelques millimètres de diamètre ; cette enveloppe, outre son rôle d’offrir une grande robustesse, permet de dissiper toute la chaleur qui se forme dans la jonction pendant le fonctionnement au-delà du point Zener.

Pour cette raison le constructeur indique dans ses données techniques la valeur de la puissance maximum à ne pas dépasser. Ainsi, lorsque l’on s’est fixé le point B (figure 3), c’est-à-dire le point de fonctionnement correspondant à la tension maximum appliquée (VZmax) faut-il encore vérifier sur le graphique de la caractéristique, la valeur du courant maximum IZmax et calculer que le produit VZmax x IZmax ne dépasse pas la puissance maximum que l’on peut dissiper.

Si par exemple, la puissance maximum que l’on peut dissiper à 25°C, est 0,5W, que la tension maximum inverse appliquée est de 8,4 V et que IZmax, (lu sur le graphique de la caractéristique de la diode) correspondant est de 50mA (0,05A), la puissance est :

VZmax x IZmax = 8,4 x 0,05 = 0,42 W

La valeur ainsi trouvée (0,42 W) ne dépasse pas la valeur maximum indiquée (0,5W) ; le point de fonctionnement prévu est donc correct.

Outre le point B, il faut encore déterminer sur la caractéristique, le point A, qui délimite la région rectiligne au voisinage du coude. En effet, à partir du point A et jusqu’au point 0, les variations de tension ne correspondent pas à de grandes variations du courant, et comme nous le verrons plus tard, on perd le bénéfice de l’effet stabilisateur de la diode dans les circuits de régulation.

En général, au point A correspond une tension minimum VZmin, qui est supérieure de quelques dizièmes de volts à la tension de Zener VZ et pour lequel, le courant IZmin est de quelques dizièmes de milliampères.

Les limites que nous venons de voir, VZmax et IZmax (qui sont déterminées en fonction de la puissance maximum et que l’on peut dissiper) et VZmin et IZmin (qui sont déterminées en considérant sur la caractéristique le point extrème A dans la région rectiligne au-delà du point de Zener, sont très importantes pour étudier le fonctionnement des circuits classiques de régulation qui constituent les applications principales des diodes Zener.

Je vous ai dessiné en figure 4, le schéma de principe d’un régulateur de tension avec diode Zener.

En série avec la diode DZ, figure la résistance Rd qui représente la résistance dynamique de cette même diode, c’est-à-dire la résistance qui est offerte au passage du courant IZ, quand ce dernier varie dans les conditions normales de fonctionnement entre IZmax et IZmin.

La résistance dynamique d’une diode Zener qui travaille comme stabilisatrice de tension, est de l’ordre de quelques ohms. D’autre part, la tension VZo, présente aux bornes de la diode quand le courant IZ est presque nul, est de l’ordre de quelques volts à quelques dizaines de volts.

Etudions par exemple la variation de VS en supposant que Rd = 2 Ω

et que : IZmin = 2mA ; IZmax = 30mA ; VZo = 8 V

Avec ces données, nous pouvons calculer la valeur de VS en tenant compte de la relation : VS = VZo + (IZ x Rd)

dans laquelle le produit IZ x Rd représente la chute de tension aux bornes de la diode dûe à la résistance dynamique Rd.

Pour IZmin = 2mA = 0,002A et IZmax = 30mA = 0,030 A on obtient respectivement les valeurs suivantes :

V'S = 8 + 0,002 x 2 = 8,004 V

V''S = 8 + 0,03 x 2 = 8,06 V

En effectuant la différence entre les valeurs ainsi trouvées :

V''S - V'S = 8,060 – 8,004 = 0,056 V

on détermine la variation maximum de la tension VS correspondant à une variation du courant IZ de 2mA à 30mA. On peut voir rapidement que cette variation de la tension est très faible par rapport à la valeur de la tension présente initialement aux bornes de la diode. En effet, la variation de 0,056 V par rapport à 8,004 représente une variation inférieure à 1% de la tension disponible (pour une variation du courant très grande).

La diode Zener du circuit stabilisé de la figure 4 se comporte un peu comme une soupape de sécurité dans une enveloppe où existe une certaine pression. Quand la tension à l’entrée VE augmente, la tension VS tend à augmenter aussi : Le courant absorbé par la charge tend à augmenter aussi. Mais c’est à ce moment qu’intervient la diode : à un accroissement de VS, elle absorbe un courant IZ plus grand qu’initialement ; une chute de tension plus grande aux bornes de RS se produit et s’oppose ainsi à l’accroissement de VE ; la valeur de la tension de sortie VS reste ainsi pratiquement inaltérée.

On obtient des résultats semblables à ceux où la tension de sortie est stabilisée, si c’est le courant I dans la charge qui varie.

En effet, si le courant I diminue, la chute de tension aux bornes de la résistance RS diminue aussi et la tension VS tend à augmenter ; mais comme on l’a vu, à un accroissement de VS correspond un accroissement sensible de IZ qui compense la diminution du courant absorbé par la charge et maintient ainsi constante la chute de tension aux bornes de RS et donc la tension de sortie VS.

Si maintenant, au lieu de considérer un accroissement de la tension d’entrée VE, ou une diminution du courant absorbé par la charge, on considère une diminution de VE (ou bien un accroissement de I), on retrouve le même effet de stabilisation, avec comme seule différence que la tension VS tend maintenant à diminuer et provoque ainsi une notable diminution de VE et d’un autre côté peut compenser l’accroissement de I.

Soit que l’on considère la variation de la tension d’entrée VE, soit que l’on considère la variation du courant I absorbé par la charge, on voit le rôle primordial de la résistance RS, qui est appelée résistance de stabilisation ou résistance de limitation. Chacune de ces deux dénominations met en évidence la fonction fondamentale de la résistance RS et chacune d’entr’elles peut être mise en avant.

Comme résistance de stabilisation, RS recueille toutes les variations du courant IZ et du courant I (figure 4) ; ainsi, la chute de tension qui apparait à ses bornes, fait varier légèrement la tension VS qui suit l’allure des deux courants et règle en même temps, le courant IZ de la diode. Comme résistance de limitation, RS sert à protéger la diode des surcharges en maintenant le courant IZ entre les limites de la valeur maximum admissible (puissance dissipable maximum à ne pas dépasser).

Quand on utilise une diode Zener pour stabiliser une tension d’alimentation ou pour délivrer une tension constante de référence (comme nous le verrons tout à l’heure) : faut-il encore choisir pour une tension d’entrée VE donnée, la valeur appropriée de RS.

De RS, dépend en premier lieu, le facteur de "variation". C’est le rapport entre la variation de la tension d’entrée que l’on désire stabiliser et la variation résiduelle de la tension de sortie stabilisée. On démontre, qu’il existe entre ces différentes grandeurs, la relation suivante :

(Variation de VE)/(Variation de VS ) = 1 + RS/Rd

Ainsi, en connaissant la résistance dynamique (Rd) de la diode au point de fonctionnement prévu, en connaissant aussi la variation maximum de VE à l’entrée et les variations de VS stabilisée que l’on peut accepter, on pourra calculer facilement la valeur correspondante de RS. Avant d’aller plus loin il faut faire quelques remarques.

La relation précédente est seulement valable, si l’on considère que le courant I absorbé par la charge reste constant. La relation ne définit donc pas totalement la "qualité" du circuit stabilisé.

Ainsi, pour mieux définir le circuit, on fait appel à un autre facteur, appelé Facteur de stabilisation S qui peut être traduit par la relation suivante :

S = (1 + RS/Rd ) x VS/VE

En comparant cette relation avec la précédente, on remarquera tout de suite que S dépend du facteur de "Variation", de la tension d’entrée VE et de la tesion de sortie VS. On peut démontrer aussi, que ce facteur n’est autre que le rapport entre la variation en pourcent de la tension d’entrée à la variation en pourcent de la tension de sortie stabilisée.

La valeur de S croît avec l’augmentation de RS jusqu’à atteindre une valeur maximum, à partir de laquelle, un accroissement ultérieur de RS reste pratiquement inefficace. On peut donc en conclure, que pour obtenir une bonne stabilisation, il faut que RS soit suffisament élevée pour faire "sentir" son efficacité, c’est-à-dire qu’il faut que RS soit très grande par rapport à Rd ; mais il ne faut pas non plus que RS soit infiniment grande, parce qu’à partir d’un certain point, son efficacité pratique serait presque négligeable. Son efficacité pourrait même devenir néfaste, si à cause de la chute de tension aux bornes de RS, la diode se trouvait à travailler en deçà du point A (figure 3), c’est-à-dire dans le coude de la caractéristique au lieu de la région rectiligne comprise entre les points A et B.

En pratique, pour trouver la valeur appropriée de RS, on commence par déterminer tout d’abord la valeur minimum IZmin du courant dans la diode, de façon que pour cette valeur de courant, le point de fonctionnement se trouve au-delà du coude de la caractéristique (figure 3). Ensuite, en connaissant la tension minimum à l’entrée (VEmin), la tension de Zener (VS) et le courant maximum dans la charge (Imax) on calcule RS à l’aide de la formule :

RS = (VEmin-VS)/(IZmin+ Imax )

Par exemple, pour VEmin = 36 V, VS = 24V, IZmin = 0,002 A et Imax = 0,05A, on trouve :

RS = (36-24)/(0,002+0,05) = 12/0,052 = 230 Ω

De cette façon, on peut déterminer la valeur maximum de la résistance de stabilisation pour protéger efficacement la diode et de façon que pour cette valeur l’effet négatif dû à la courbure de la caractéristique au voisinage du point de Zener ne se fasse pas encore sentir.

Le circuit régulateur de la figure 4 est prévu pour des montages à faible ou moyenne puissance ; pour des puissances plus élevées, la stabilisation ne peut être meilleure que 5%. Pour obtenir des stabilisations meilleures à de faibles tensions et de forts courants, on utilise les diodes Zener comme éléments qui délivrent des tensions de référence dans des circuits à transistors (ou à tubes).

En figure 5, je vous ai reporté deux schémas de principe qui illustrent l’utilisation des diodes Zener dans des circuits stabilisés à transistors.

La figure 5a représente un circuit simple qui utilise un transistor de puissance comme élément stabilisateur placé en parallèle sur la charge. La tension de collecteur est prélevée à la sortie du régulateur constitué par la diode DZ, la résistance de limitation RS et par la résistance directe de la diode émetteur-base du transistor TR.

L’effet stabilisateur est accru par la présence du transistor. En effet, supposons que le courant IZ augmente par suite d’un accroissement de la tension d’entrée VE. Ceci va se traduire par un accroissement du courant de base (IZ = IB) qui va entraîner une augmentation du courant de collecteur IC. Ceci va correspondre en définitive à une chute de tension plus grande aux bornes de RS qui tendra à s’opposer à l’accroissement initial de VE. Le mécanisme de la stabilisation est encore le même que dans le circuit de la figure 4, avec la seule différence que la stabilisation est beaucoup plus énergique en ce sens que les variations du courant IZ (déjà assez importantes par elles-mêmes) sont ici encore plus grandes puisqu’elles sont amplifiées par le transistor.

Le montage de la figure 5b, à la différence du précédent, utilise le transistor stabilisateur en série avec la charge, et tout le courant d’émetteur IE traverse la charge.

Dans ce circuit, la diode Zener sert à stabiliser la tension de base de façon à ce que le courant IE (et par conséquent la tension VS) reste constant malgré les variations possibles de la tension d’entrée VE.

Avec les circuits simples dérivés directement de ceux de la figure 5 on peut obtenir des stabilisations meilleures que 2% pour des basses tensions et de forts courants ; en augmentant le nombre de transistors, c’est-à-dire en rendant plus complexes les circuits, mais en se basant toujours sur les mêmes principes, on peut obtenir des stabilisations de l’ordre de 1% ou même moins.


EXERCICES DE RÉVISION SUR LA 30ème LEÇON THÉORIQUE

1 – Parmi les différentes diodes à semi-conducteurs, quelle est la meilleure à utiliser en tant que redresseur ?

2 – Dans quels appareils utilise-t-on le redresseur à oxyde de cuivre à faible courant ?

3 – Si on devait utiliser un redresseur à une température de 200°C quelle sorte de diode faudrait-il choisir ?

4 – Dans quelle région de la caractéristique, doit-on faire travailler la diode Zener en stabilisatrice de tension ?

5 – Qu’appelle-t-on "facteur de variation" ?

6 – Comment définit-on le "facteur de stabilisation" S d’un régulateur simple à diode Zener ?

7 – Comment calcule-t-on la résistance de stabilisation RS dans un régulateur simple à diode Zener ?

8 – Quel est l’avantage dans l’utilisation d’un transistor associé à une diode Zener dans un régulateur plus complexe ?

9 – Quel est l’ordre de grandeur de la résistance dynamique d’une diode Zener au point de fonctionnement ?


RÉPONSES AUX EXERCICES DE RÉVISION SUR LA 29ème LEÇON THÉORIQUE

1 – La valeur maximum de la tension inverse qui se trouve appliquée à une diode à charge capacitive (ou à résistance et capacité) est égale à la valeur de crête à crête (Vpp) de la tension d’entrée ; ainsi, en connaissant la valeur de crête (Vp) de la tension d’entrée, on calcule la valeur maximum de la tension inverse en multipliant par 2 cette valeur (Vpp = 2 Vp)

2 – Si la tension à l’entrée est donnée en volts efficaces, il faut la multiplier par 2,82 pour obtenir la valeur crête-crête :

(Vpp = 2,82 Veff)

3 – La tension de seuil d’une diode est la valeur maximum de la tension directe pour laquelle le rendement du redresseur est encore pratiquement égal à zéro

4 – La valeur efficace de la tension d’entrée maximum que l’on peut admettre est donnée par

VEM = -VDM/2,82

5 – Non ; en diminuant la résistance de charge, la tension de ronflement augmente.

6 – En reprenant la figure 6 (Théorique 29) on voit que pour 1% de ronflement X = 125,6.

Comme X = 6,28 x f x C x R

On trouve C= 125,6/(6,28 x 50 x 1000) = 0,0004F (= 400µF)

7 – Le taux de ronflement étant de 1% nous avons :

t = 1/100 = Vr/Vo  d’où Vr = Vo/100 = 250/100 = 2,5V

8 – Déterminons un point A’ de la droite de charge en prenant par exemple un courant de 300mA. La tension est alors V = RI = 666 x 0,3 = 200 V (environ). Joignons le point A’ à l’origine 0. Prolongeons cette droite qui coupe la caractéristique au point B’. La valeur du courant est 400mA (environ) et la tension est 269V (environ)

9 – Oui ; la tension de sortie d’un redresseur diminue lorsque le courant absorbé par la charge augmente, à cause de la chute de tension qui se produit aux bornes : de la résistance interne de la diode, de la résistance de protection et de la résistance du transformateur (ou aux bornes de la résistance interne du générateur).

Fin de la leçon 30